[PPML] TPC-DS doc upadte (#6238)
* ppml tpcds doc update * fix * update data generation step
This commit is contained in:
parent
f7e07ecc69
commit
5e4c269a49
1 changed files with 189 additions and 182 deletions
|
|
@ -8,79 +8,60 @@
|
|||
|
||||
### Prepare TPC-DS kit and data
|
||||
|
||||
1. Download and compile tpc-ds
|
||||
1. Download and compile TPC-DS kit
|
||||
|
||||
```bash
|
||||
git clone --recursive https://github.com/intel-analytics/zoo-tutorials.git
|
||||
cd /path/to/zoo-tutorials
|
||||
cd zoo-tutorials/tpcds-spark
|
||||
git clone https://github.com/databricks/tpcds-kit.git
|
||||
cd tpcds-kit/tools
|
||||
make OS=LINUX
|
||||
cd ../../
|
||||
sbt package
|
||||
```
|
||||
|
||||
2. Generate data
|
||||
|
||||
```bash
|
||||
cd /path/to/zoo-tutorials
|
||||
cd tpcds-spark/spark-sql-perf
|
||||
cd /path/to/zoo-tutorials/tpcds-spark/spark-sql-perf
|
||||
sbt "test:runMain com.databricks.spark.sql.perf.tpcds.GenTPCDSData -d <dsdgenDir> -s <scaleFactor> -l <dataDir> -f parquet"
|
||||
```
|
||||
|
||||
`dsdgenDir` is the path of `tpcds-kit/tools`, `scaleFactor` is the size of the data, for example `-s 1` will generate 1G data, `dataDir` is the path to store generated data.
|
||||
`dsdgenDir` is the path of `tpcds-kit/tools`, `scaleFactor` indicates data size, for example `-s 1` will generate data of 1GB scale factor, `dataDir` is the path to store generated data.
|
||||
|
||||
### Deploy PPML TPC-DS on Kubernetes
|
||||
|
||||
1. Compile Kit
|
||||
|
||||
```bash
|
||||
cd zoo-tutorials/tpcds-spark
|
||||
sbt package
|
||||
```
|
||||
|
||||
2. Create external tables
|
||||
|
||||
```bash
|
||||
$SPARK_HOME/bin/spark-submit \
|
||||
--class "createTables" \
|
||||
--master <spark-master> \
|
||||
--driver-memory 20G \
|
||||
--executor-cores <executor-cores> \
|
||||
--total-executor-cores <total-cores> \
|
||||
--executor-memory 20G \
|
||||
--jars spark-sql-perf/target/scala-2.12/spark-sql-perf_2.12-0.5.1-SNAPSHOT.jar \
|
||||
target/scala-2.12/tpcds-benchmark_2.12-0.1.jar <dataDir> <dsdgenDir> <scaleFactor>
|
||||
```
|
||||
|
||||
3. Pull docker image
|
||||
1. Pull docker image
|
||||
|
||||
```bash
|
||||
sudo docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:2.1.0-SNAPSHOT
|
||||
```
|
||||
|
||||
4. Prepare SGX keys (following instructions [here](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-big-data-ml/python/docker-graphene#11-prepare-the-keyspassworddataenclave-keypem "here")), make sure keys and tpcds-spark can be accessed on each K8S node
|
||||
5. Start a bigdl-ppml enabled Spark K8S client container with configured local IP, key, tpc-ds and kuberconfig path
|
||||
2. Prepare keys, password and k8s configurations (follow instructions [here](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-big-data-ml/python/docker-graphene#11-prepare-the-keyspassworddataenclave-keypem "here")), make sure keys, `tpcds-spark` and generated tpc-ds data can be accessed on each K8S node, e.g. deploy on distributed storage inclusing NFS and HDFS.
|
||||
3. Start a bigdl-ppml enabled Spark K8S client container with configured local IP, key, tpc-ds and kubeconfig path, also configure data path if your data is stored on local FS
|
||||
|
||||
```bash
|
||||
export ENCLAVE_KEY=/YOUR_DIR/keys/enclave-key.pem
|
||||
export DATA_PATH=/YOUR_DIR/zoo-tutorials/tpcds-spark
|
||||
export TPCDS_PATH=/YOUR_DIR/zoo-tutorials/tpcds-spark
|
||||
export DATA_PATH=/YOUR_DIR/data
|
||||
export KEYS_PATH=/YOUR_DIR/keys
|
||||
export SECURE_PASSWORD_PATH=/YOUR_DIR/password
|
||||
export KUBERCONFIG_PATH=/YOUR_DIR/kuberconfig
|
||||
export KUBECONFIG_PATH=/YOUR_DIR/kubeconfig
|
||||
export LOCAL_IP=$local_ip
|
||||
export DOCKER_IMAGE=intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:2.1.0-SNAPSHOT
|
||||
sudo docker run -itd \
|
||||
--privileged \
|
||||
--net=host \
|
||||
--name=spark-local-k8s-client \
|
||||
--name=spark-k8s-client \
|
||||
--oom-kill-disable \
|
||||
--device=/dev/sgx/enclave \
|
||||
--device=/dev/sgx/provision \
|
||||
-v /var/run/aesmd/aesm.socket:/var/run/aesmd/aesm.socket \
|
||||
-v $ENCLAVE_KEY:/graphene/Pal/src/host/Linux-SGX/signer/enclave-key.pem \
|
||||
-v $DATA_PATH:/ppml/trusted-big-data-ml/work/tpcds-spark \
|
||||
-v $TPCDS_PATH:/ppml/trusted-big-data-ml/work/tpcds-spark \
|
||||
-v $DATA_PATH:/ppml/trusted-big-data-ml/work/data \
|
||||
-v $KEYS_PATH:/ppml/trusted-big-data-ml/work/keys \
|
||||
-v $SECURE_PASSWORD_PATH:/ppml/trusted-big-data-ml/work/password \
|
||||
-v $KUBERCONFIG_PATH:/root/.kube/config \
|
||||
-v $KUBECONFIG_PATH:/root/.kube/config \
|
||||
-e RUNTIME_SPARK_MASTER=k8s://https://$LOCAL_IP:6443 \
|
||||
-e RUNTIME_K8S_SERVICE_ACCOUNT=spark \
|
||||
-e RUNTIME_K8S_SPARK_IMAGE=$DOCKER_IMAGE \
|
||||
|
|
@ -98,13 +79,29 @@
|
|||
$DOCKER_IMAGE bash
|
||||
```
|
||||
|
||||
6. Attach to the client container
|
||||
4. Attach to the client container
|
||||
|
||||
```bash
|
||||
sudo docker exec -it spark-local-k8s-client bash
|
||||
```
|
||||
|
||||
7. Modify `spark-executor-template.yaml`, add path of `enclave-key`, `tpcds-spark` and `kuberconfig` on host
|
||||
5. Create external tables
|
||||
|
||||
```bash
|
||||
cd /ppml/trusted-big-data-ml/work/tpcds-spark
|
||||
$SPARK_HOME/bin/spark-submit \
|
||||
--class "createTables" \
|
||||
--master <spark-master> \
|
||||
--driver-memory 20G \
|
||||
--executor-cores <executor-cores> \
|
||||
--total-executor-cores <total-cores> \
|
||||
--executor-memory 20G \
|
||||
--jars spark-sql-perf/target/scala-2.12/spark-sql-perf_2.12-0.5.1-SNAPSHOT.jar \
|
||||
target/scala-2.12/tpcds-benchmark_2.12-0.1.jar <dataDir> <dsdgenDir> <scaleFactor>
|
||||
```
|
||||
`<dataDir>` and `<dsdgenDir>` are the generated data path and `tpcds-kit/tools` path, both should be accessible in the container. After successfully creating tables, there should be a directory `metastore_db` in the current working path.
|
||||
|
||||
6. Modify `/ppml/trusted-big-data-ml/spark-executor-template.yaml`, add path of `enclave-key`, `tpcds-spark` and `kubeconfig`. If data is not stored on HDFS, also configure mount volume `data` and make sure `mountPath` is the same as `<dataDir>` used in create table step.
|
||||
|
||||
```yaml
|
||||
apiVersion: v1
|
||||
|
|
@ -115,29 +112,37 @@
|
|||
securityContext:
|
||||
privileged: true
|
||||
volumeMounts:
|
||||
- name: enclave-key
|
||||
mountPath: /graphene/Pal/src/host/Linux-SGX/signer/enclave-key.pem
|
||||
...
|
||||
- name: tpcds
|
||||
mountPath: /ppml/trusted-big-data-ml/work/tpcds-spark
|
||||
- name: data
|
||||
mountPath: /mounted/path/to/data
|
||||
- name: kubeconf
|
||||
mountPath: /root/.kube/config
|
||||
volumes:
|
||||
- name: enclave-key
|
||||
hostPath:
|
||||
path: /root/keys/enclave-key.pem
|
||||
path: /path/to/keys/enclave-key.pem
|
||||
...
|
||||
- name: tpcds
|
||||
hostPath:
|
||||
path: /path/to/tpcds-spark
|
||||
- name: data
|
||||
hostPath:
|
||||
path: /path/to/data
|
||||
- name: kubeconf
|
||||
hostPath:
|
||||
path: /path/to/kuberconfig
|
||||
path: /path/to/kubeconfig
|
||||
```
|
||||
|
||||
8. Execute TPC-DS queries
|
||||
7. Execute TPC-DS queries
|
||||
|
||||
Optional argument `QUERY` is the query number to run. Multiple query numbers should be separated by space, e.g. `1 2 3`. If no query number is specified, all 1-99 queries would be executed.
|
||||
Optional argument `QUERY` is the query number to run. Multiple query numbers should be separated by space, e.g. `1 2 3`. If no query number is specified, all 1-99 queries would be executed. Configure `$hdfs_host_ip` and `$hdfs_port` if the output is stored on HDFS.
|
||||
|
||||
```bash
|
||||
cd /ppml/trusted-big-data-ml/work/tpcds-spark
|
||||
secure_password=`openssl rsautl -inkey /ppml/trusted-big-data-ml/work/password/key.txt -decrypt </ppml/trusted-big-data-ml/work/password/output.bin` && \
|
||||
export TF_MKL_ALLOC_MAX_BYTES=10737418240 && \
|
||||
export SPARK_LOCAL_IP=$LOCAL_IP && \
|
||||
|
|
@ -147,7 +152,7 @@
|
|||
export OUTPUT_DIR=hdfs://$HDFS_HOST:$HDFS_PORT/tpc-ds/output \
|
||||
export QUERY=3
|
||||
/opt/jdk8/bin/java \
|
||||
-cp '$TPCDS_DIR/target/scala-2.12/tpcds-benchmark_2.12-0.1.jar:/ppml/trusted-big-data-ml/work/spark-3.1.2/conf/:/ppml/trusted-big-data-ml/work/spark-3.1.2/jars/*' \
|
||||
-cp '$TPCDS_DIR/target/scala-2.12/tpcds-benchmark_2.12-0.1.jar:$TPCDS_DIR/spark-sql-perf/target/scala-2.12/spark-sql-perf_2.12-0.5.1-SNAPSHOT.jar:/ppml/trusted-big-data-ml/work/spark-3.1.2/conf/:/ppml/trusted-big-data-ml/work/spark-3.1.2/jars/*' \
|
||||
-Xmx10g \
|
||||
-Dbigdl.mklNumThreads=1 \
|
||||
org.apache.spark.deploy.SparkSubmit \
|
||||
|
|
@ -206,9 +211,11 @@
|
|||
--conf spark.ssl.trustStorePassword=$secure_password \
|
||||
--conf spark.ssl.trustStoreType=JKS \
|
||||
--class "TPCDSBenchmark" \
|
||||
--jars $TPCDS_DIR/spark-sql-perf/target/scala-2.12/spark-sql-perf_2.12-0.5.1-SNAPSHOT.jar \
|
||||
--verbose \
|
||||
$TPCDS_DIR/target/scala-2.12/tpcds-benchmark_2.12-0.1.jar \
|
||||
$OUTPUT_DIR $QUERY
|
||||
```
|
||||
Note: For Spark cluster mode, the `metastore_db` directory generated in table create step needs to be mounted into driver pod, and the path in the container needs to specified by adding `--conf spark.hadoop.javax.jdo.option.ConnectionURL="jdbc:derby:;databaseName=/path/to/metastore_db;create=true" \` to `spark-submit` command.
|
||||
|
||||
After benchmark is finished, the performance result is saved as `part-*.csv` file under `<OUTPUT_DIR>/performance` directory.
|
||||
|
|
|
|||
Loading…
Reference in a new issue