fix and optimize chatglm2-32k and chatglm3-128k (#11306)
This commit is contained in:
		
							parent
							
								
									60cb1dac7c
								
							
						
					
					
						commit
						5e25766855
					
				
					 3 changed files with 57 additions and 217 deletions
				
			
		| 
						 | 
				
			
			@ -1008,26 +1008,21 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
 | 
			
		||||
    if model.config.architectures is not None \
 | 
			
		||||
       and model.config.architectures[0] in ["ChatGLMModel", "ChatGLMForConditionalGeneration"]:
 | 
			
		||||
        if (model.config.num_layers == 28 and hasattr(model.config, 'rope_ratio')
 | 
			
		||||
                and model.config.rope_ratio == 16):
 | 
			
		||||
            # chatglm2-6b-32k
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            from ipex_llm.transformers.models.chatglm2_32k import chatglm2_32k_attention_forward
 | 
			
		||||
            convert_forward(model,
 | 
			
		||||
                            module.SelfAttention,
 | 
			
		||||
                            chatglm2_32k_attention_forward)
 | 
			
		||||
        elif hasattr(model.config, 'padded_vocab_size') and \
 | 
			
		||||
        if hasattr(model.config, 'padded_vocab_size') and \
 | 
			
		||||
                model.config.padded_vocab_size == 65024:
 | 
			
		||||
            # chatglm2-6b
 | 
			
		||||
            # chatglm2-6b, chatglm2-6b-32k, chatglm3-6b, chatglm3-6b-32k, chatglm3-6b-128k
 | 
			
		||||
            modeling_module_name = model.__class__.__module__
 | 
			
		||||
            module = importlib.import_module(modeling_module_name)
 | 
			
		||||
            from ipex_llm.transformers.models.chatglm2 import chatglm2_attention_forward
 | 
			
		||||
            from ipex_llm.transformers.models.chatglm2 import chatglm_rms_norm_forward
 | 
			
		||||
            from ipex_llm.transformers.models.chatglm2 import chatglm2_encoder_forward
 | 
			
		||||
            from ipex_llm.transformers.models.chatglm2 import chatglm2_model_forward
 | 
			
		||||
            convert_forward(model,
 | 
			
		||||
                            module.SelfAttention,
 | 
			
		||||
                            chatglm2_attention_forward)
 | 
			
		||||
            convert_forward(model,
 | 
			
		||||
                            module.GLMTransformer,
 | 
			
		||||
                            chatglm2_encoder_forward)
 | 
			
		||||
            convert_forward(model,
 | 
			
		||||
                            module.ChatGLMModel,
 | 
			
		||||
                            chatglm2_model_forward)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -145,6 +145,57 @@ def chatglm2_model_forward(
 | 
			
		|||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# remove code which stores first token's kv cache by tensor format
 | 
			
		||||
# to fix chatglm2-32k and chatglm3-128k
 | 
			
		||||
def chatglm2_encoder_forward(
 | 
			
		||||
    self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
 | 
			
		||||
    use_cache: Optional[bool] = True,
 | 
			
		||||
    output_hidden_states: Optional[bool] = False,
 | 
			
		||||
):
 | 
			
		||||
    if not kv_caches:
 | 
			
		||||
        kv_caches = [None for _ in range(self.num_layers)]
 | 
			
		||||
    presents = () if use_cache else None
 | 
			
		||||
    if self.gradient_checkpointing and self.training:
 | 
			
		||||
        use_cache = False
 | 
			
		||||
 | 
			
		||||
    all_self_attentions = None
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    for index in range(self.num_layers):
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states = all_hidden_states + (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        layer = self._get_layer(index)
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            layer_ret = torch.utils.checkpoint.checkpoint(
 | 
			
		||||
                layer,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask,
 | 
			
		||||
                rotary_pos_emb,
 | 
			
		||||
                kv_caches[index],
 | 
			
		||||
                use_cache
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            layer_ret = layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask,
 | 
			
		||||
                rotary_pos_emb,
 | 
			
		||||
                kv_cache=kv_caches[index],
 | 
			
		||||
                use_cache=use_cache
 | 
			
		||||
            )
 | 
			
		||||
        hidden_states, kv_cache = layer_ret
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            presents = presents + (kv_cache,)
 | 
			
		||||
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states = all_hidden_states + (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    # Final layer norm.
 | 
			
		||||
    if self.post_layer_norm:
 | 
			
		||||
        hidden_states = self.final_layernorm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    return hidden_states, presents, all_hidden_states, all_self_attentions
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def chatglm2_attention_forward(
 | 
			
		||||
    self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
 | 
			
		||||
):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,206 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# This file is adapted from
 | 
			
		||||
# https://huggingface.co/THUDM/chatglm2-6b-32k/blob/main/configuration_chatglm.py
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.chatglm2 import core_attn_forward_8eb45c
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
			
		||||
KV_CACHE_ALLOC_MIN_LENGTH = 512
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def split_tensor_along_last_dim(
 | 
			
		||||
        tensor: torch.Tensor,
 | 
			
		||||
        num_partitions: int,
 | 
			
		||||
        contiguous_split_chunks: bool = False,
 | 
			
		||||
) -> List[torch.Tensor]:
 | 
			
		||||
    """Split a tensor along its last dimension.
 | 
			
		||||
    Arguments:
 | 
			
		||||
        tensor: input tensor.
 | 
			
		||||
        num_partitions: number of partitions to split the tensor
 | 
			
		||||
        contiguous_split_chunks: If True, make each chunk contiguous
 | 
			
		||||
                                 in memory.
 | 
			
		||||
    Returns:
 | 
			
		||||
        A list of Tensors
 | 
			
		||||
    """
 | 
			
		||||
    # Get the size and dimension.
 | 
			
		||||
    last_dim = tensor.dim() - 1
 | 
			
		||||
    last_dim_size = tensor.size()[last_dim] // num_partitions
 | 
			
		||||
    # Split.
 | 
			
		||||
    tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
 | 
			
		||||
    # Note: torch.split does not create contiguous tensors by default.
 | 
			
		||||
    if contiguous_split_chunks:
 | 
			
		||||
        return tuple(chunk.contiguous() for chunk in tensor_list)
 | 
			
		||||
 | 
			
		||||
    return tensor_list
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@torch.jit.script
 | 
			
		||||
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    # x: [sq, b, np, hn]
 | 
			
		||||
    sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
 | 
			
		||||
    rot_dim = rope_cache.shape[-2] * 2
 | 
			
		||||
    x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
 | 
			
		||||
    # truncate to support variable sizes
 | 
			
		||||
    rope_cache = rope_cache[:sq]
 | 
			
		||||
    xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
 | 
			
		||||
    rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
 | 
			
		||||
    x_out2 = torch.stack(
 | 
			
		||||
        [
 | 
			
		||||
            xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
 | 
			
		||||
            xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
 | 
			
		||||
        ],
 | 
			
		||||
        -1,
 | 
			
		||||
    )
 | 
			
		||||
    x_out2 = x_out2.flatten(3)
 | 
			
		||||
    return torch.cat((x_out2, x_pass), dim=-1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def chatglm2_32k_attention_forward(
 | 
			
		||||
    self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
 | 
			
		||||
):
 | 
			
		||||
    # hidden_states: [sq, b, h]
 | 
			
		||||
 | 
			
		||||
    # =================================================
 | 
			
		||||
    # Pre-allocate memory for key-values for inference.
 | 
			
		||||
    # =================================================
 | 
			
		||||
    # =====================
 | 
			
		||||
    # Query, Key, and Value
 | 
			
		||||
    # =====================
 | 
			
		||||
 | 
			
		||||
    # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    mixed_x_layer = self.query_key_value(hidden_states)
 | 
			
		||||
 | 
			
		||||
    if self.multi_query_attention:
 | 
			
		||||
        (query_layer, key_layer, value_layer) = mixed_x_layer.split(
 | 
			
		||||
            [
 | 
			
		||||
                self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
 | 
			
		||||
                self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
 | 
			
		||||
                self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
 | 
			
		||||
            ],
 | 
			
		||||
            dim=-1,
 | 
			
		||||
        )
 | 
			
		||||
        query_layer = query_layer.view(
 | 
			
		||||
            query_layer.size()[:-1] + (self.num_attention_heads_per_partition,
 | 
			
		||||
                                       self.hidden_size_per_attention_head)
 | 
			
		||||
        )
 | 
			
		||||
        key_layer = key_layer.view(
 | 
			
		||||
            key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition,
 | 
			
		||||
                                     self.hidden_size_per_attention_head)
 | 
			
		||||
        )
 | 
			
		||||
        value_layer = value_layer.view(
 | 
			
		||||
            value_layer.size()[:-1]
 | 
			
		||||
            + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition,
 | 
			
		||||
                                                        3 * self.hidden_size_per_attention_head)
 | 
			
		||||
        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
 | 
			
		||||
 | 
			
		||||
        # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
 | 
			
		||||
        (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
 | 
			
		||||
 | 
			
		||||
    # apply relative positional encoding (rotary embedding)
 | 
			
		||||
    if rotary_pos_emb is not None:
 | 
			
		||||
        query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
 | 
			
		||||
        key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
 | 
			
		||||
 | 
			
		||||
    cur_length, batch_size = query_layer.shape[0], query_layer.shape[1]
 | 
			
		||||
 | 
			
		||||
    if self.multi_query_attention:
 | 
			
		||||
        key_length = key_layer.size(0)
 | 
			
		||||
        query_group_size = self.num_attention_heads_per_partition // \
 | 
			
		||||
            self.num_multi_query_groups_per_partition
 | 
			
		||||
        key_layer = key_layer.permute(1, 2, 0, 3).unsqueeze(-3)  # [bs, nh/k, sl, hn]
 | 
			
		||||
        key_layer = key_layer.expand(-1, -1, query_group_size, -1, -1)
 | 
			
		||||
        key_layer = key_layer.contiguous().view((batch_size,
 | 
			
		||||
                                                 self.num_attention_heads_per_partition,
 | 
			
		||||
                                                 key_length,
 | 
			
		||||
                                                 self.hidden_size_per_attention_head))
 | 
			
		||||
        value_layer = value_layer.permute(1, 2, 0, 3).unsqueeze(-3)
 | 
			
		||||
        value_layer = value_layer.expand(-1, -1, query_group_size, -1, -1)
 | 
			
		||||
        value_layer = value_layer.contiguous().view((batch_size,
 | 
			
		||||
                                                     self.num_attention_heads_per_partition,
 | 
			
		||||
                                                     key_length,
 | 
			
		||||
                                                     self.hidden_size_per_attention_head))
 | 
			
		||||
 | 
			
		||||
    # adjust key and value for inference
 | 
			
		||||
    if kv_cache is not None:
 | 
			
		||||
        cache_k, cache_v = kv_cache
 | 
			
		||||
        cache_k = cache_k.permute(1, 2, 0, 3)
 | 
			
		||||
        cache_v = cache_v.permute(1, 2, 0, 3)
 | 
			
		||||
        past_length = cache_k.size(2)
 | 
			
		||||
 | 
			
		||||
        if cache_k.stride()[1] < (past_length + cur_length) * cache_k.size(3):
 | 
			
		||||
            max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(batch_size,
 | 
			
		||||
                                                       self.num_attention_heads_per_partition,
 | 
			
		||||
                                                       self.hidden_size_per_attention_head,
 | 
			
		||||
                                                       past_length,
 | 
			
		||||
                                                       max_cache_length,
 | 
			
		||||
                                                       dtype=query_layer.dtype,
 | 
			
		||||
                                                       device=device)
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = max(KV_CACHE_ALLOC_MIN_LENGTH, cur_length) \
 | 
			
		||||
            + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        key_cache, value_cache = init_kv_cache(batch_size, self.num_attention_heads_per_partition,
 | 
			
		||||
                                               self.hidden_size_per_attention_head, cur_length,
 | 
			
		||||
                                               max_cache_length,
 | 
			
		||||
                                               dtype=query_layer.dtype, device=device)
 | 
			
		||||
        key_cache[:] = key_layer
 | 
			
		||||
        value_cache[:] = value_layer
 | 
			
		||||
        key_layer = key_cache
 | 
			
		||||
        value_layer = value_cache
 | 
			
		||||
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        key_layer = key_layer.permute(2, 0, 1, 3)
 | 
			
		||||
        value_layer = value_layer.permute(2, 0, 1, 3)
 | 
			
		||||
        if kv_cache is None:
 | 
			
		||||
            kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0),
 | 
			
		||||
                                  value_layer.unsqueeze(0).unsqueeze(0)), dim=1)
 | 
			
		||||
        else:
 | 
			
		||||
            kv_cache = (key_layer, value_layer)
 | 
			
		||||
    else:
 | 
			
		||||
        kv_cache = None
 | 
			
		||||
 | 
			
		||||
    # ==================================
 | 
			
		||||
    # core attention computation
 | 
			
		||||
    # ==================================
 | 
			
		||||
 | 
			
		||||
    context_layer = core_attn_forward_8eb45c(query_layer, key_layer, value_layer, attention_mask)
 | 
			
		||||
 | 
			
		||||
    # =================
 | 
			
		||||
    # Output. [sq, b, h]
 | 
			
		||||
    # =================
 | 
			
		||||
 | 
			
		||||
    output = self.dense(context_layer)
 | 
			
		||||
 | 
			
		||||
    return output, kv_cache
 | 
			
		||||
		Loading…
	
		Reference in a new issue