optimize qwen2 vl again (#12109)
This commit is contained in:
parent
03bd01c99c
commit
5d63aef60b
1 changed files with 105 additions and 24 deletions
|
|
@ -44,10 +44,11 @@ import torch
|
||||||
|
|
||||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
||||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, should_use_fuse_rope
|
||||||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
|
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
|
||||||
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
|
||||||
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention, Qwen2VLModel
|
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention
|
||||||
from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_multimodal_rotary_pos_emb
|
from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_multimodal_rotary_pos_emb
|
||||||
from transformers.models.qwen2_vl.modeling_qwen2_vl import repeat_kv
|
from transformers.models.qwen2_vl.modeling_qwen2_vl import repeat_kv
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
|
|
@ -71,9 +72,18 @@ def qwen2_vl_model_forward(
|
||||||
return_dict: Optional[bool] = None,
|
return_dict: Optional[bool] = None,
|
||||||
cache_position: Optional[torch.LongTensor] = None,
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
# IPEX-LLM OPT: kv cache and quantize kv cache and sdp
|
output_attentions = (
|
||||||
inputs = input_ids if input_ids is not None else inputs_embeds
|
output_attentions if output_attentions is not None
|
||||||
|
else self.config.output_attentions
|
||||||
|
)
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None
|
||||||
|
else self.config.output_hidden_states
|
||||||
|
)
|
||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
|
||||||
|
# IPEX-LLM OPT start: kv cache and quantize kv cache
|
||||||
|
inputs = input_ids if input_ids is not None else inputs_embeds
|
||||||
use_cache = True if inputs.device.type == "xpu" else use_cache
|
use_cache = True if inputs.device.type == "xpu" else use_cache
|
||||||
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs)
|
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs)
|
||||||
if use_cache:
|
if use_cache:
|
||||||
|
|
@ -81,19 +91,86 @@ def qwen2_vl_model_forward(
|
||||||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||||
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
|
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
|
||||||
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||||
|
# IPEX-LLM OPT end
|
||||||
|
|
||||||
return Qwen2VLModel.forward(
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
self=self,
|
|
||||||
input_ids=input_ids,
|
invalidInputError((input_ids is None) ^ (inputs_embeds is None),
|
||||||
attention_mask=attention_mask,
|
"You cannot specify both input_ids and inputs_embeds at the same time, "
|
||||||
position_ids=position_ids,
|
"and must specify either one")
|
||||||
past_key_values=past_key_values,
|
|
||||||
inputs_embeds=inputs_embeds,
|
if inputs_embeds is None:
|
||||||
use_cache=use_cache,
|
inputs_embeds = self.embed_tokens(input_ids)
|
||||||
output_attentions=output_attentions,
|
|
||||||
output_hidden_states=output_hidden_states,
|
if cache_position is None:
|
||||||
return_dict=return_dict,
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||||
cache_position=cache_position,
|
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
|
||||||
|
device=inputs_embeds.device)
|
||||||
|
|
||||||
|
# the hard coded `3` is for temporal, height and width.
|
||||||
|
if position_ids is None:
|
||||||
|
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
||||||
|
elif position_ids.dim() == 2:
|
||||||
|
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
||||||
|
|
||||||
|
causal_mask = self._update_causal_mask(
|
||||||
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
|
# create position embeddings to be shared across the decoder layers
|
||||||
|
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
||||||
|
|
||||||
|
# IPEX-LLM OPT start: use fused 2D rope
|
||||||
|
if (torch.equal(position_ids[0], position_ids[1])
|
||||||
|
and torch.equal(position_ids[0], position_ids[2])
|
||||||
|
and should_use_fuse_rope(hidden_states, position_ids, False)):
|
||||||
|
position_ids = position_ids[0].contiguous()
|
||||||
|
position_embeddings = self.rotary_emb.inv_freq
|
||||||
|
# IEPX_LLM OPT end
|
||||||
|
|
||||||
|
# decoder layers
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
all_self_attns = () if output_attentions else None
|
||||||
|
next_decoder_cache = None
|
||||||
|
|
||||||
|
for decoder_layer in self.layers:
|
||||||
|
layer_outputs = decoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
attention_mask=causal_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_values,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
cache_position=cache_position,
|
||||||
|
position_embeddings=position_embeddings,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_self_attns += (layer_outputs[1],)
|
||||||
|
|
||||||
|
hidden_states = self.norm(hidden_states)
|
||||||
|
|
||||||
|
# add hidden states from the last decoder layer
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
next_cache = next_decoder_cache if use_cache else None
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||||
|
if v is not None)
|
||||||
|
return BaseModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=next_cache,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_self_attns,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -117,19 +194,23 @@ def qwen2_vl_attention_forward(
|
||||||
self.num_key_value_heads,
|
self.num_key_value_heads,
|
||||||
self.num_key_value_heads], dim=1)
|
self.num_key_value_heads], dim=1)
|
||||||
|
|
||||||
if position_embeddings is None:
|
if position_ids.dim() == 2:
|
||||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
import xe_addons
|
||||||
|
inv_freq = position_embeddings
|
||||||
|
xe_addons.rotary_half_inplaced(inv_freq, position_ids, query_states, key_states)
|
||||||
else:
|
else:
|
||||||
cos, sin = position_embeddings
|
if position_embeddings is None:
|
||||||
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||||
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
else:
|
||||||
)
|
cos, sin = position_embeddings
|
||||||
|
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
||||||
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
||||||
|
)
|
||||||
|
|
||||||
kv_seq_len = key_states.shape[-2]
|
kv_seq_len = key_states.shape[-2]
|
||||||
if past_key_value is not None:
|
if past_key_value is not None:
|
||||||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
||||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
self.layer_idx, cache_kwargs)
|
self.layer_idx, None)
|
||||||
kv_seq_len = key_states.shape[-2]
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue