optimize qwen2 vl again (#12109)

This commit is contained in:
Yishuo Wang 2024-09-23 13:22:01 +08:00 committed by GitHub
parent 03bd01c99c
commit 5d63aef60b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -44,10 +44,11 @@ import torch
from ipex_llm.transformers.models.common import merge_qkv_base from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, should_use_fuse_rope
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
from ipex_llm.utils.common import invalidInputError
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention, Qwen2VLModel from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention
from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_multimodal_rotary_pos_emb from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_multimodal_rotary_pos_emb
from transformers.models.qwen2_vl.modeling_qwen2_vl import repeat_kv from transformers.models.qwen2_vl.modeling_qwen2_vl import repeat_kv
from transformers.modeling_outputs import BaseModelOutputWithPast from transformers.modeling_outputs import BaseModelOutputWithPast
@ -71,9 +72,18 @@ def qwen2_vl_model_forward(
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]: ) -> Union[Tuple, BaseModelOutputWithPast]:
# IPEX-LLM OPT: kv cache and quantize kv cache and sdp output_attentions = (
inputs = input_ids if input_ids is not None else inputs_embeds output_attentions if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache use_cache = use_cache if use_cache is not None else self.config.use_cache
# IPEX-LLM OPT start: kv cache and quantize kv cache
inputs = input_ids if input_ids is not None else inputs_embeds
use_cache = True if inputs.device.type == "xpu" else use_cache use_cache = True if inputs.device.type == "xpu" else use_cache
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs) use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs)
if use_cache: if use_cache:
@ -81,19 +91,86 @@ def qwen2_vl_model_forward(
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache): elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
# IPEX-LLM OPT end
return Qwen2VLModel.forward( return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self=self,
input_ids=input_ids, invalidInputError((input_ids is None) ^ (inputs_embeds is None),
attention_mask=attention_mask, "You cannot specify both input_ids and inputs_embeds at the same time, "
position_ids=position_ids, "and must specify either one")
past_key_values=past_key_values,
inputs_embeds=inputs_embeds, if inputs_embeds is None:
use_cache=use_cache, inputs_embeds = self.embed_tokens(input_ids)
output_attentions=output_attentions,
output_hidden_states=output_hidden_states, if cache_position is None:
return_dict=return_dict, past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position=cache_position, cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device)
# the hard coded `3` is for temporal, height and width.
if position_ids is None:
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
elif position_ids.dim() == 2:
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# IPEX-LLM OPT start: use fused 2D rope
if (torch.equal(position_ids[0], position_ids[1])
and torch.equal(position_ids[0], position_ids[2])
and should_use_fuse_rope(hidden_states, position_ids, False)):
position_ids = position_ids[0].contiguous()
position_embeddings = self.rotary_emb.inv_freq
# IEPX_LLM OPT end
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
) )
@ -117,19 +194,23 @@ def qwen2_vl_attention_forward(
self.num_key_value_heads, self.num_key_value_heads,
self.num_key_value_heads], dim=1) self.num_key_value_heads], dim=1)
if position_embeddings is None: if position_ids.dim() == 2:
cos, sin = self.rotary_emb(value_states, position_ids) import xe_addons
inv_freq = position_embeddings
xe_addons.rotary_half_inplaced(inv_freq, position_ids, query_states, key_states)
else: else:
cos, sin = position_embeddings if position_embeddings is None:
query_states, key_states = apply_multimodal_rotary_pos_emb( cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] else:
) cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
kv_seq_len = key_states.shape[-2] kv_seq_len = key_states.shape[-2]
if past_key_value is not None: if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs) self.layer_idx, None)
kv_seq_len = key_states.shape[-2] kv_seq_len = key_states.shape[-2]
attn_weights = None attn_weights = None