LLM: optimize namespace and remove unused import logic (#8302)
This commit is contained in:
		
							parent
							
								
									5d0e130605
								
							
						
					
					
						commit
						5d5da7b2c7
					
				
					 8 changed files with 113 additions and 16 deletions
				
			
		| 
						 | 
				
			
			@ -19,6 +19,5 @@
 | 
			
		|||
# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
			
		||||
# only search the first bigdl package and end up finding only one sub-package.
 | 
			
		||||
 | 
			
		||||
from .quantize import quantize
 | 
			
		||||
from .convert import _convert_to_ggml
 | 
			
		||||
from .convert_model import convert_model
 | 
			
		||||
from bigdl.llm.utils.common import LazyImport
 | 
			
		||||
convert_model = LazyImport('bigdl.llm.ggml.convert_model.convert_model')
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -60,7 +60,7 @@ class Bloom:
 | 
			
		|||
                 n_ctx: int = 512,
 | 
			
		||||
                 seed: int = 1337,
 | 
			
		||||
                 logits_all: bool = False,
 | 
			
		||||
                 n_threads: int = -1,
 | 
			
		||||
                 n_threads: int = 2,
 | 
			
		||||
                 n_batch: int = 8,
 | 
			
		||||
                 last_n_tokens_size: int = 64,
 | 
			
		||||
                 verbose: bool = True,
 | 
			
		||||
| 
						 | 
				
			
			@ -72,8 +72,7 @@ class Bloom:
 | 
			
		|||
            n_ctx: Maximum context size.
 | 
			
		||||
            seed: Random seed. 0 for random.
 | 
			
		||||
            logits_all: Return logits for all tokens, not just the last token.
 | 
			
		||||
            n_threads: Number of threads to use.
 | 
			
		||||
                       If None, the number of threads is automatically determined.
 | 
			
		||||
            n_threads: Number of threads to use. Default to be 2.
 | 
			
		||||
            n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
 | 
			
		||||
            last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
 | 
			
		||||
            verbose: Print verbose output to stderr.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -139,7 +139,7 @@ class Gptneox(GenerationMixin):
 | 
			
		|||
        use_mmap: bool = True,
 | 
			
		||||
        use_mlock: bool = False,
 | 
			
		||||
        embedding: bool = False,
 | 
			
		||||
        n_threads: Optional[int] = None,
 | 
			
		||||
        n_threads: Optional[int] = 2,
 | 
			
		||||
        n_batch: int = 512,
 | 
			
		||||
        last_n_tokens_size: int = 64,
 | 
			
		||||
        lora_base: Optional[str] = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -160,8 +160,7 @@ class Gptneox(GenerationMixin):
 | 
			
		|||
            use_mmap: Use mmap if possible.
 | 
			
		||||
            use_mlock: Force the system to keep the model in RAM.
 | 
			
		||||
            embedding: Embedding mode only.
 | 
			
		||||
            n_threads: Number of threads to use. If None, the number of threads
 | 
			
		||||
            is automatically determined.
 | 
			
		||||
            n_threads: Number of threads to use. Default to be 2.
 | 
			
		||||
            n_batch: Maximum number of prompt tokens to batch together when calling gptneox_eval.
 | 
			
		||||
            last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
 | 
			
		||||
            lora_base: Optional path to base model, useful if using a quantized base model and
 | 
			
		||||
| 
						 | 
				
			
			@ -197,7 +196,7 @@ class Gptneox(GenerationMixin):
 | 
			
		|||
 | 
			
		||||
        self.cache: Optional[GptneoxCache] = None
 | 
			
		||||
 | 
			
		||||
        self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
 | 
			
		||||
        self.n_threads = n_threads
 | 
			
		||||
 | 
			
		||||
        self.lora_base = lora_base
 | 
			
		||||
        self.lora_path = lora_path
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -137,7 +137,7 @@ class Llama(GenerationMixin):
 | 
			
		|||
        use_mmap: bool = True,
 | 
			
		||||
        use_mlock: bool = False,
 | 
			
		||||
        embedding: bool = False,
 | 
			
		||||
        n_threads: Optional[int] = None,
 | 
			
		||||
        n_threads: Optional[int] = 2,
 | 
			
		||||
        n_batch: int = 512,
 | 
			
		||||
        last_n_tokens_size: int = 64,
 | 
			
		||||
        lora_base: Optional[str] = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -158,8 +158,7 @@ class Llama(GenerationMixin):
 | 
			
		|||
            use_mmap: Use mmap if possible.
 | 
			
		||||
            use_mlock: Force the system to keep the model in RAM.
 | 
			
		||||
            embedding: Embedding mode only.
 | 
			
		||||
            n_threads: Number of threads to use. If None, the number of threads is
 | 
			
		||||
            automatically determined.
 | 
			
		||||
            n_threads: Number of threads to use. Default to be 2.
 | 
			
		||||
            n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
 | 
			
		||||
            last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
 | 
			
		||||
            lora_base: Optional path to base model, useful if using a quantized base model and
 | 
			
		||||
| 
						 | 
				
			
			@ -194,7 +193,7 @@ class Llama(GenerationMixin):
 | 
			
		|||
 | 
			
		||||
        self.cache: Optional[LlamaCache] = None
 | 
			
		||||
 | 
			
		||||
        self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
 | 
			
		||||
        self.n_threads = n_threads
 | 
			
		||||
 | 
			
		||||
        self.lora_base = lora_base
 | 
			
		||||
        self.lora_path = lora_path
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -21,9 +21,7 @@
 | 
			
		|||
 | 
			
		||||
import os
 | 
			
		||||
import traceback
 | 
			
		||||
from huggingface_hub import snapshot_download
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
from bigdl.llm.ggml import convert_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForCausalLM:
 | 
			
		||||
| 
						 | 
				
			
			@ -71,6 +69,7 @@ class AutoModelForCausalLM:
 | 
			
		|||
        if not os.path.exists(pretrained_model_name_or_path):
 | 
			
		||||
            try:
 | 
			
		||||
                # download from huggingface based on repo id
 | 
			
		||||
                from huggingface_hub import snapshot_download
 | 
			
		||||
                pretrained_model_name_or_path = snapshot_download(
 | 
			
		||||
                    repo_id=pretrained_model_name_or_path)
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
| 
						 | 
				
			
			@ -90,6 +89,7 @@ class AutoModelForCausalLM:
 | 
			
		|||
        # points to a huggingface checkpoint
 | 
			
		||||
        if not os.path.isfile(pretrained_model_name_or_path):
 | 
			
		||||
            # huggingface checkpoint
 | 
			
		||||
            from bigdl.llm.ggml import convert_model
 | 
			
		||||
            ggml_model_path = convert_model(input_path=pretrained_model_name_or_path,
 | 
			
		||||
                                            output_path=cache_dir,
 | 
			
		||||
                                            model_family=model_family,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										24
									
								
								python/llm/src/bigdl/llm/models.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								python/llm/src/bigdl/llm/models.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,24 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
 | 
			
		||||
# physically located elsewhere.
 | 
			
		||||
# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
			
		||||
# only search the first bigdl package and end up finding only one sub-package.
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.ggml.model.llama import Llama
 | 
			
		||||
from bigdl.llm.ggml.model.gptneox import Gptneox
 | 
			
		||||
from bigdl.llm.ggml.model.bloom import Bloom
 | 
			
		||||
| 
						 | 
				
			
			@ -20,3 +20,4 @@
 | 
			
		|||
# only search the first bigdl package and end up finding only one sub-package.
 | 
			
		||||
 | 
			
		||||
from .log4Error import invalidInputError, invalidOperationError
 | 
			
		||||
from .lazyimport import LazyImport
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										76
									
								
								python/llm/src/bigdl/llm/utils/common/lazyimport.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										76
									
								
								python/llm/src/bigdl/llm/utils/common/lazyimport.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,76 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import importlib
 | 
			
		||||
import sys
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# code adaptted from https://github.com/intel/neural-compressor/
 | 
			
		||||
#                    blob/master/neural_compressor/utils/utility.py#L88
 | 
			
		||||
class LazyImport:
 | 
			
		||||
    """
 | 
			
		||||
    Lazy import python module until use.
 | 
			
		||||
 | 
			
		||||
    Example:
 | 
			
		||||
        >>> from bigdl.llm.utils.common import LazyImport
 | 
			
		||||
        >>> _convert_to_ggml = LazyImport('bigdl.llm.ggml.convert._convert_to_ggml')
 | 
			
		||||
        >>> _convert_to_ggml(model_path, outfile_dir)
 | 
			
		||||
    """
 | 
			
		||||
    def __init__(self, module_name: str):
 | 
			
		||||
        """
 | 
			
		||||
        :param module_name: Import module name.
 | 
			
		||||
        """
 | 
			
		||||
        self.module_name = module_name
 | 
			
		||||
 | 
			
		||||
    def __getattr__(self, name):
 | 
			
		||||
        absolute_name = importlib.util.resolve_name(self.module_name)
 | 
			
		||||
        # not reload modules
 | 
			
		||||
        try:
 | 
			
		||||
            return getattr(sys.modules[absolute_name], name)
 | 
			
		||||
        except (KeyError, AttributeError):
 | 
			
		||||
            pass
 | 
			
		||||
 | 
			
		||||
        if "." in absolute_name:
 | 
			
		||||
            # Split module name to prevent class name from being introduced as package
 | 
			
		||||
            parent_name, _, child_name = absolute_name.rpartition('.')
 | 
			
		||||
        else:
 | 
			
		||||
            parent_name, child_name = absolute_name, None
 | 
			
		||||
 | 
			
		||||
        try:
 | 
			
		||||
            # For import parent module and get the submodule with getattr.
 | 
			
		||||
            module = importlib.import_module(parent_name)
 | 
			
		||||
            module = getattr(module, child_name) if child_name else module
 | 
			
		||||
        except AttributeError:
 | 
			
		||||
            # Triggered when the parent module cannot get the child module using getattr.
 | 
			
		||||
            # More common when calling staticmethods or classmethods. e.g. from_tsdataset.
 | 
			
		||||
            full_module_name = parent_name+'.'+child_name if child_name else parent_name
 | 
			
		||||
            spec = importlib.util.find_spec(full_module_name)
 | 
			
		||||
            module = importlib.util.module_from_spec(spec)
 | 
			
		||||
            spec.loader.exec_module(module)
 | 
			
		||||
 | 
			
		||||
        return getattr(module, name)
 | 
			
		||||
 | 
			
		||||
    def __call__(self, *args, **kwargs):
 | 
			
		||||
        function_name = self.module_name.rpartition('.')[-1]
 | 
			
		||||
        module_name = self.module_name.rpartition(f'.{function_name}')[0]
 | 
			
		||||
        try:
 | 
			
		||||
            module = sys.modules[module_name]
 | 
			
		||||
        except KeyError:
 | 
			
		||||
            pass
 | 
			
		||||
 | 
			
		||||
        module = importlib.import_module(module_name)
 | 
			
		||||
        function = getattr(module, function_name)
 | 
			
		||||
        return function(*args, **kwargs)
 | 
			
		||||
		Loading…
	
		Reference in a new issue