LLM: optimize namespace and remove unused import logic (#8302)
This commit is contained in:
parent
5d0e130605
commit
5d5da7b2c7
8 changed files with 113 additions and 16 deletions
|
|
@ -19,6 +19,5 @@
|
||||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||||
# only search the first bigdl package and end up finding only one sub-package.
|
# only search the first bigdl package and end up finding only one sub-package.
|
||||||
|
|
||||||
from .quantize import quantize
|
from bigdl.llm.utils.common import LazyImport
|
||||||
from .convert import _convert_to_ggml
|
convert_model = LazyImport('bigdl.llm.ggml.convert_model.convert_model')
|
||||||
from .convert_model import convert_model
|
|
||||||
|
|
|
||||||
|
|
@ -60,7 +60,7 @@ class Bloom:
|
||||||
n_ctx: int = 512,
|
n_ctx: int = 512,
|
||||||
seed: int = 1337,
|
seed: int = 1337,
|
||||||
logits_all: bool = False,
|
logits_all: bool = False,
|
||||||
n_threads: int = -1,
|
n_threads: int = 2,
|
||||||
n_batch: int = 8,
|
n_batch: int = 8,
|
||||||
last_n_tokens_size: int = 64,
|
last_n_tokens_size: int = 64,
|
||||||
verbose: bool = True,
|
verbose: bool = True,
|
||||||
|
|
@ -72,8 +72,7 @@ class Bloom:
|
||||||
n_ctx: Maximum context size.
|
n_ctx: Maximum context size.
|
||||||
seed: Random seed. 0 for random.
|
seed: Random seed. 0 for random.
|
||||||
logits_all: Return logits for all tokens, not just the last token.
|
logits_all: Return logits for all tokens, not just the last token.
|
||||||
n_threads: Number of threads to use.
|
n_threads: Number of threads to use. Default to be 2.
|
||||||
If None, the number of threads is automatically determined.
|
|
||||||
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
|
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
|
||||||
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
||||||
verbose: Print verbose output to stderr.
|
verbose: Print verbose output to stderr.
|
||||||
|
|
|
||||||
|
|
@ -139,7 +139,7 @@ class Gptneox(GenerationMixin):
|
||||||
use_mmap: bool = True,
|
use_mmap: bool = True,
|
||||||
use_mlock: bool = False,
|
use_mlock: bool = False,
|
||||||
embedding: bool = False,
|
embedding: bool = False,
|
||||||
n_threads: Optional[int] = None,
|
n_threads: Optional[int] = 2,
|
||||||
n_batch: int = 512,
|
n_batch: int = 512,
|
||||||
last_n_tokens_size: int = 64,
|
last_n_tokens_size: int = 64,
|
||||||
lora_base: Optional[str] = None,
|
lora_base: Optional[str] = None,
|
||||||
|
|
@ -160,8 +160,7 @@ class Gptneox(GenerationMixin):
|
||||||
use_mmap: Use mmap if possible.
|
use_mmap: Use mmap if possible.
|
||||||
use_mlock: Force the system to keep the model in RAM.
|
use_mlock: Force the system to keep the model in RAM.
|
||||||
embedding: Embedding mode only.
|
embedding: Embedding mode only.
|
||||||
n_threads: Number of threads to use. If None, the number of threads
|
n_threads: Number of threads to use. Default to be 2.
|
||||||
is automatically determined.
|
|
||||||
n_batch: Maximum number of prompt tokens to batch together when calling gptneox_eval.
|
n_batch: Maximum number of prompt tokens to batch together when calling gptneox_eval.
|
||||||
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
||||||
lora_base: Optional path to base model, useful if using a quantized base model and
|
lora_base: Optional path to base model, useful if using a quantized base model and
|
||||||
|
|
@ -197,7 +196,7 @@ class Gptneox(GenerationMixin):
|
||||||
|
|
||||||
self.cache: Optional[GptneoxCache] = None
|
self.cache: Optional[GptneoxCache] = None
|
||||||
|
|
||||||
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
|
self.n_threads = n_threads
|
||||||
|
|
||||||
self.lora_base = lora_base
|
self.lora_base = lora_base
|
||||||
self.lora_path = lora_path
|
self.lora_path = lora_path
|
||||||
|
|
|
||||||
|
|
@ -137,7 +137,7 @@ class Llama(GenerationMixin):
|
||||||
use_mmap: bool = True,
|
use_mmap: bool = True,
|
||||||
use_mlock: bool = False,
|
use_mlock: bool = False,
|
||||||
embedding: bool = False,
|
embedding: bool = False,
|
||||||
n_threads: Optional[int] = None,
|
n_threads: Optional[int] = 2,
|
||||||
n_batch: int = 512,
|
n_batch: int = 512,
|
||||||
last_n_tokens_size: int = 64,
|
last_n_tokens_size: int = 64,
|
||||||
lora_base: Optional[str] = None,
|
lora_base: Optional[str] = None,
|
||||||
|
|
@ -158,8 +158,7 @@ class Llama(GenerationMixin):
|
||||||
use_mmap: Use mmap if possible.
|
use_mmap: Use mmap if possible.
|
||||||
use_mlock: Force the system to keep the model in RAM.
|
use_mlock: Force the system to keep the model in RAM.
|
||||||
embedding: Embedding mode only.
|
embedding: Embedding mode only.
|
||||||
n_threads: Number of threads to use. If None, the number of threads is
|
n_threads: Number of threads to use. Default to be 2.
|
||||||
automatically determined.
|
|
||||||
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
|
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
|
||||||
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
||||||
lora_base: Optional path to base model, useful if using a quantized base model and
|
lora_base: Optional path to base model, useful if using a quantized base model and
|
||||||
|
|
@ -194,7 +193,7 @@ class Llama(GenerationMixin):
|
||||||
|
|
||||||
self.cache: Optional[LlamaCache] = None
|
self.cache: Optional[LlamaCache] = None
|
||||||
|
|
||||||
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1)
|
self.n_threads = n_threads
|
||||||
|
|
||||||
self.lora_base = lora_base
|
self.lora_base = lora_base
|
||||||
self.lora_path = lora_path
|
self.lora_path = lora_path
|
||||||
|
|
|
||||||
|
|
@ -21,9 +21,7 @@
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import traceback
|
import traceback
|
||||||
from huggingface_hub import snapshot_download
|
|
||||||
from bigdl.llm.utils.common import invalidInputError
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
from bigdl.llm.ggml import convert_model
|
|
||||||
|
|
||||||
|
|
||||||
class AutoModelForCausalLM:
|
class AutoModelForCausalLM:
|
||||||
|
|
@ -71,6 +69,7 @@ class AutoModelForCausalLM:
|
||||||
if not os.path.exists(pretrained_model_name_or_path):
|
if not os.path.exists(pretrained_model_name_or_path):
|
||||||
try:
|
try:
|
||||||
# download from huggingface based on repo id
|
# download from huggingface based on repo id
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
pretrained_model_name_or_path = snapshot_download(
|
pretrained_model_name_or_path = snapshot_download(
|
||||||
repo_id=pretrained_model_name_or_path)
|
repo_id=pretrained_model_name_or_path)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|
@ -90,6 +89,7 @@ class AutoModelForCausalLM:
|
||||||
# points to a huggingface checkpoint
|
# points to a huggingface checkpoint
|
||||||
if not os.path.isfile(pretrained_model_name_or_path):
|
if not os.path.isfile(pretrained_model_name_or_path):
|
||||||
# huggingface checkpoint
|
# huggingface checkpoint
|
||||||
|
from bigdl.llm.ggml import convert_model
|
||||||
ggml_model_path = convert_model(input_path=pretrained_model_name_or_path,
|
ggml_model_path = convert_model(input_path=pretrained_model_name_or_path,
|
||||||
output_path=cache_dir,
|
output_path=cache_dir,
|
||||||
model_family=model_family,
|
model_family=model_family,
|
||||||
|
|
|
||||||
24
python/llm/src/bigdl/llm/models.py
Normal file
24
python/llm/src/bigdl/llm/models.py
Normal file
|
|
@ -0,0 +1,24 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||||
|
# physically located elsewhere.
|
||||||
|
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||||
|
# only search the first bigdl package and end up finding only one sub-package.
|
||||||
|
|
||||||
|
from bigdl.llm.ggml.model.llama import Llama
|
||||||
|
from bigdl.llm.ggml.model.gptneox import Gptneox
|
||||||
|
from bigdl.llm.ggml.model.bloom import Bloom
|
||||||
|
|
@ -20,3 +20,4 @@
|
||||||
# only search the first bigdl package and end up finding only one sub-package.
|
# only search the first bigdl package and end up finding only one sub-package.
|
||||||
|
|
||||||
from .log4Error import invalidInputError, invalidOperationError
|
from .log4Error import invalidInputError, invalidOperationError
|
||||||
|
from .lazyimport import LazyImport
|
||||||
|
|
|
||||||
76
python/llm/src/bigdl/llm/utils/common/lazyimport.py
Normal file
76
python/llm/src/bigdl/llm/utils/common/lazyimport.py
Normal file
|
|
@ -0,0 +1,76 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import importlib
|
||||||
|
import sys
|
||||||
|
|
||||||
|
|
||||||
|
# code adaptted from https://github.com/intel/neural-compressor/
|
||||||
|
# blob/master/neural_compressor/utils/utility.py#L88
|
||||||
|
class LazyImport:
|
||||||
|
"""
|
||||||
|
Lazy import python module until use.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> from bigdl.llm.utils.common import LazyImport
|
||||||
|
>>> _convert_to_ggml = LazyImport('bigdl.llm.ggml.convert._convert_to_ggml')
|
||||||
|
>>> _convert_to_ggml(model_path, outfile_dir)
|
||||||
|
"""
|
||||||
|
def __init__(self, module_name: str):
|
||||||
|
"""
|
||||||
|
:param module_name: Import module name.
|
||||||
|
"""
|
||||||
|
self.module_name = module_name
|
||||||
|
|
||||||
|
def __getattr__(self, name):
|
||||||
|
absolute_name = importlib.util.resolve_name(self.module_name)
|
||||||
|
# not reload modules
|
||||||
|
try:
|
||||||
|
return getattr(sys.modules[absolute_name], name)
|
||||||
|
except (KeyError, AttributeError):
|
||||||
|
pass
|
||||||
|
|
||||||
|
if "." in absolute_name:
|
||||||
|
# Split module name to prevent class name from being introduced as package
|
||||||
|
parent_name, _, child_name = absolute_name.rpartition('.')
|
||||||
|
else:
|
||||||
|
parent_name, child_name = absolute_name, None
|
||||||
|
|
||||||
|
try:
|
||||||
|
# For import parent module and get the submodule with getattr.
|
||||||
|
module = importlib.import_module(parent_name)
|
||||||
|
module = getattr(module, child_name) if child_name else module
|
||||||
|
except AttributeError:
|
||||||
|
# Triggered when the parent module cannot get the child module using getattr.
|
||||||
|
# More common when calling staticmethods or classmethods. e.g. from_tsdataset.
|
||||||
|
full_module_name = parent_name+'.'+child_name if child_name else parent_name
|
||||||
|
spec = importlib.util.find_spec(full_module_name)
|
||||||
|
module = importlib.util.module_from_spec(spec)
|
||||||
|
spec.loader.exec_module(module)
|
||||||
|
|
||||||
|
return getattr(module, name)
|
||||||
|
|
||||||
|
def __call__(self, *args, **kwargs):
|
||||||
|
function_name = self.module_name.rpartition('.')[-1]
|
||||||
|
module_name = self.module_name.rpartition(f'.{function_name}')[0]
|
||||||
|
try:
|
||||||
|
module = sys.modules[module_name]
|
||||||
|
except KeyError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
module = importlib.import_module(module_name)
|
||||||
|
function = getattr(module, function_name)
|
||||||
|
return function(*args, **kwargs)
|
||||||
Loading…
Reference in a new issue