LLM: add fuse optimization for Mistral. (#9184)
* add fuse optimization for mistral. * fix. * fix * fix style. * fix. * fix error. * fix style. * fix style.
This commit is contained in:
parent
49e1381c7f
commit
5ca8a851e9
3 changed files with 160 additions and 1 deletions
|
|
@ -348,4 +348,15 @@ def optimize(model):
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
module.AquilaRMSNorm,
|
module.AquilaRMSNorm,
|
||||||
llama_rms_norm_forward)
|
llama_rms_norm_forward)
|
||||||
|
elif model.config.model_type == "mistral":
|
||||||
|
modeling_module_name = model.__class__.__module__
|
||||||
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
from bigdl.llm.transformers.models.mistral import mistral_attention_forward
|
||||||
|
convert_forward(model,
|
||||||
|
module.MistralAttention,
|
||||||
|
mistral_attention_forward
|
||||||
|
)
|
||||||
|
convert_forward(model,
|
||||||
|
module.MistralRMSNorm,
|
||||||
|
llama_rms_norm_forward)
|
||||||
return model
|
return model
|
||||||
|
|
|
||||||
148
python/llm/src/bigdl/llm/transformers/models/mistral.py
Normal file
148
python/llm/src/bigdl/llm/transformers/models/mistral.py
Normal file
|
|
@ -0,0 +1,148 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mistral/modeling_mistral.py
|
||||||
|
#
|
||||||
|
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" PyTorch Mistral model."""
|
||||||
|
import math
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
|
||||||
|
apply_rotary_pos_emb_no_cache_xpu
|
||||||
|
|
||||||
|
|
||||||
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
||||||
|
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim)
|
||||||
|
to (batch, num_attention_heads, seqlen, head_dim)
|
||||||
|
"""
|
||||||
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||||||
|
if n_rep == 1:
|
||||||
|
return hidden_states
|
||||||
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
|
||||||
|
n_rep, slen, head_dim)
|
||||||
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||||||
|
|
||||||
|
|
||||||
|
def mistral_attention_forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor]=None,
|
||||||
|
position_ids: Optional[torch.LongTensor]=None,
|
||||||
|
past_key_value: Optional[Tuple[torch.Tensor]]=None,
|
||||||
|
output_attentions: bool=False,
|
||||||
|
use_cache: bool=False,
|
||||||
|
padding_mask: Optional[torch.Tensor]=None,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
query_states = self.q_proj(hidden_states)
|
||||||
|
key_states = self.k_proj(hidden_states)
|
||||||
|
value_states = self.v_proj(hidden_states)
|
||||||
|
|
||||||
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
key_states = key_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
value_states = value_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
kv_seq_len += past_key_value[0].shape[-2]
|
||||||
|
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
||||||
|
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||||
|
key_states,
|
||||||
|
position_ids,
|
||||||
|
"mistral")
|
||||||
|
else:
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids, "mistral")
|
||||||
|
|
||||||
|
if past_key_value is not None:
|
||||||
|
# reuse k, v, self_attention
|
||||||
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||||
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||||
|
|
||||||
|
past_key_value = (key_states, value_states) if use_cache else None
|
||||||
|
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
|
attn_weights = torch.matmul(
|
||||||
|
query_states,
|
||||||
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)},"
|
||||||
|
f" but is {attn_weights.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||||
|
f" but is {attention_mask.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = nn.functional.\
|
||||||
|
softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||||
|
invalidInputError(
|
||||||
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
|
||||||
|
f" but is {attn_output.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
@ -98,7 +98,7 @@ def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family):
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
|
q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
|
||||||
k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
|
k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
|
||||||
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox"]:
|
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral"]:
|
||||||
linear_q4_0.apply_rotary_embedding_half_qk(q, k, position_ids, q_embed, k_embed)
|
linear_q4_0.apply_rotary_embedding_half_qk(q, k, position_ids, q_embed, k_embed)
|
||||||
return q_embed, k_embed
|
return q_embed, k_embed
|
||||||
else:
|
else:
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue