remove old rope usage (#12552)
This commit is contained in:
parent
a86487c539
commit
5ae0006103
3 changed files with 0 additions and 203 deletions
|
|
@ -1,67 +0,0 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import logging
|
||||
from ipex_llm.transformers.xpu_customize_fwd import custom_fwd, custom_bwd
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
|
||||
LOG = logging.getLogger("ipex_llm.rope_embedding")
|
||||
|
||||
|
||||
# Fast RoPE for finetuning, split the q and k
|
||||
def apply_fast_rope_embedding(q, k, position_ids, model_family):
|
||||
if q.device.type != "xpu":
|
||||
invalidInputError(False,
|
||||
f"only xpu is supported in this function")
|
||||
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
|
||||
"mixtral"]:
|
||||
q_embed = FastRopeEmbedding.apply(q, position_ids)
|
||||
k_embed = FastRopeEmbedding.apply(k, position_ids)
|
||||
return q_embed, k_embed
|
||||
else:
|
||||
invalidInputError(False,
|
||||
f"{model_family} is not supported.")
|
||||
|
||||
|
||||
# Fast RoPE for finetuning, split the q and k
|
||||
class FastRopeEmbedding(torch.autograd.Function):
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, x, position_ids):
|
||||
import xe_addons
|
||||
x_embed = torch.empty(x.shape, dtype=x.dtype, device=x.device)
|
||||
xe_addons.apply_rotary_embedding_half_q_or_k(x, position_ids,
|
||||
x_embed, False)
|
||||
ctx.save_for_backward(position_ids)
|
||||
return x_embed
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
import xe_addons
|
||||
# LOG.info(f"backward, grad_output: {grad_output}")
|
||||
position_ids, = ctx.saved_tensors
|
||||
dx = torch.empty(grad_output.shape,
|
||||
dtype=grad_output.dtype,
|
||||
device=grad_output.device)
|
||||
xe_addons.apply_rotary_embedding_half_q_or_k(grad_output,
|
||||
position_ids,
|
||||
dx,
|
||||
True)
|
||||
# LOG.info(f"backward, dx: {dx}, position_ids: {position_ids},
|
||||
# requires_grad: {ctx.needs_input_grad}")
|
||||
return dx, None
|
||||
|
|
@ -2500,126 +2500,6 @@ def llama_model_selective_batching_forward_4_31(
|
|||
)
|
||||
|
||||
|
||||
# For training
|
||||
def llama_attention_fast_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
padding_mask: Optional[torch.LongTensor] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
use_fast_rope = should_use_fast_rope(self, hidden_states, position_ids)
|
||||
|
||||
# Check for inference
|
||||
if use_cache and past_key_value is not None and q_len == 1:
|
||||
A, past_key_value = llama_attention_forward_4_31(
|
||||
self,
|
||||
hidden_states,
|
||||
past_key_value,
|
||||
position_ids,
|
||||
)
|
||||
return A, None, past_key_value
|
||||
|
||||
if self.config.pretraining_tp > 1:
|
||||
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
|
||||
self.config.pretraining_tp)
|
||||
query_slices = self.q_proj.weight.split(
|
||||
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
||||
)
|
||||
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
||||
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
||||
|
||||
query_states = [F.linear(hidden_states, query_slices[i])
|
||||
for i in range(self.config.pretraining_tp)]
|
||||
query_states = torch.cat(query_states, dim=-1)
|
||||
|
||||
key_states = [F.linear(hidden_states, key_slices[i])
|
||||
for i in range(self.config.pretraining_tp)]
|
||||
key_states = torch.cat(key_states, dim=-1)
|
||||
|
||||
value_states = [F.linear(hidden_states, value_slices[i])
|
||||
for i in range(self.config.pretraining_tp)]
|
||||
value_states = torch.cat(value_states, dim=-1)
|
||||
|
||||
else:
|
||||
if hasattr(self, "q_proj"):
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
else:
|
||||
qkv = self.qkv_proj(hidden_states)
|
||||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||
self.num_key_value_heads,
|
||||
self.num_key_value_heads], dim=2)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
|
||||
self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
|
||||
self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
|
||||
if use_fast_rope:
|
||||
from ipex_llm.transformers.layers.rope_embedding import apply_fast_rope_embedding
|
||||
query_states, key_states = apply_fast_rope_embedding(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
"llama")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "llama")
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
cache_position = None
|
||||
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
||||
attention_mask, cache_position,
|
||||
bsz, q_len, kv_seq_len,
|
||||
self.head_dim, self.num_heads, output_attentions)
|
||||
|
||||
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||
if attn_output.size() != attn_output_size:
|
||||
invalidInputError(False,
|
||||
f"`attn_output` should be of size {attn_output_size},"
|
||||
f" but is {attn_output.size()}")
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
if self.config.pretraining_tp > 1:
|
||||
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||||
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
|
||||
dim=1)
|
||||
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
|
||||
for i in range(self.config.pretraining_tp)])
|
||||
else:
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
def llama_model_forward_4_41_internal(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
|
|
|
|||
|
|
@ -296,7 +296,6 @@ def get_peft_model(*args, **kwargs):
|
|||
|
||||
if model.device.type == "xpu":
|
||||
cast_lora_weight(model, torch.bfloat16)
|
||||
_optimize_post(model)
|
||||
torch.xpu.synchronize()
|
||||
|
||||
return model
|
||||
|
|
@ -390,18 +389,3 @@ def cast_lora_weight(model, dtype=torch.bfloat16):
|
|||
if hasattr(module, 'weight'):
|
||||
if module.weight.dtype == torch.float32:
|
||||
module = module.to(dtype)
|
||||
|
||||
|
||||
def _optimize_post(model):
|
||||
import transformers
|
||||
from packaging import version
|
||||
from ipex_llm.transformers.convert import convert_forward
|
||||
from ipex_llm.transformers.models.llama import llama_attention_fast_forward
|
||||
|
||||
trans_version = transformers.__version__
|
||||
if version.parse(trans_version) >= version.parse("4.31.0"):
|
||||
LOG.info("Optimizing Llama finetuning....")
|
||||
convert_forward(
|
||||
model,
|
||||
transformers.models.llama.modeling_llama.LlamaAttention,
|
||||
llama_attention_fast_forward,)
|
||||
|
|
|
|||
Loading…
Reference in a new issue