[LLM] Add more transformers int4 example (Baichuan) (#8522)

* Add example model Baichuan

* Small updates to client windows settings

* Small refactor

* Small fix
This commit is contained in:
Yuwen Hu 2023-07-14 16:41:29 +08:00 committed by GitHub
parent ca6e38607c
commit 59b7287ef5
2 changed files with 136 additions and 0 deletions

View file

@ -0,0 +1,68 @@
# Baichuan
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Baichuan models. For illustration purposes, we utilize the [baichuan-inc/Baichuan-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan-13B-Chat) as a reference Baichuan model.
## 0. Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Baichuan model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
pip install bigdl-llm[all] # install bigdl-llm with 'all' option
pip install transformers_stream_generator # additional package required for Baichuan-13B-Chat to conduct generation
```
### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Baichuan model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'baichuan-inc/Baichuan-13B-Chat'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the Baichuan model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py
```
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-Nano env variables
source bigdl-nano-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```
#### 2.3 Sample Output
#### [baichuan-inc/Baichuan-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan-13B-Chat)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<human>AI是什么 <bot>
-------------------- Output --------------------
<human>AI是什么 <bot>人工智能(Artificial Intelligence简称AI)是指由人制造出来的系统所表现出来的智能,通常是通过计算机程序和传感器实现的
```
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<human>What is AI? <bot>
-------------------- Output --------------------
<human>What is AI? <bot>AI refers to the intelligence of machines and computers. It encompasses a wide range of technologies that allow them to learn, adapt, improve performance over
```

View file

@ -0,0 +1,68 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
import numpy as np
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
BAICHUAN_PROMPT_FORMAT = "<human>{prompt} <bot>"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Baichuan model')
parser.add_argument('--repo-id-or-model-path', type=str, default="baichuan-inc/Baichuan-13B-Chat",
help='The huggingface repo id for the Baichuan model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)