Orca: add save and load model doc to PyTorch Estimator quick-start. (#5504)
* feat: add save and load model doc to pytorch estimator quickstart. * fix: fix typo. * fix: fix typo * fix: fix typo. * feat: add doc to ray backend quickstart * fix: fix typo. * feat: add doc to ray backend quickstart
This commit is contained in:
		
							parent
							
								
									584ee6045c
								
							
						
					
					
						commit
						57d45e5deb
					
				
					 3 changed files with 32 additions and 4 deletions
				
			
		| 
						 | 
					@ -130,4 +130,18 @@ for r in result:
 | 
				
			||||||
    print(r, ":", result[r])
 | 
					    print(r, ":", result[r])
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### **Step 5: Save and Load the Model**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Save the Estimator states (including model and optimizer) to the provided model path.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					est.save("mnist_model")
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Load the Estimator states (model and possibly with optimizer) from provided model path. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					est.load("mnist_model") 
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**Note:** You should call `stop_orca_context()` when your application finishes.
 | 
					**Note:** You should call `stop_orca_context()` when your application finishes.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -132,4 +132,18 @@ for r in result:
 | 
				
			||||||
    print(r, ":", result[r])
 | 
					    print(r, ":", result[r])
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### **Step 5: Save and Load the Model**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Save the Estimator states (including model and optimizer) to the provided model path.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					est.save("mnist_model")
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Load the Estimator states (model and possibly with optimizer) from the provided model path.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					est.load("mnist_model")
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**Note:** You should call `stop_orca_context()` when your application finishes.
 | 
					**Note:** You should call `stop_orca_context()` when your application finishes.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -130,20 +130,20 @@ You could also save the model to Keras H5 format by passing `save_format='h5'`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
# save model in SavedModel format
 | 
					# save model in SavedModel format
 | 
				
			||||||
estimator.save("/tmp/cifar10_model")
 | 
					est.save("/tmp/cifar10_model")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# load model
 | 
					# load model
 | 
				
			||||||
estimator.load("/tmp/cifar10_model")
 | 
					est.load("/tmp/cifar10_model")
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**2. HDF5 format**
 | 
					**2. HDF5 format**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
# save model in H5 format
 | 
					# save model in H5 format
 | 
				
			||||||
estimator.save("/tmp/cifar10_model.h5", save_format='h5')
 | 
					est.save("/tmp/cifar10_model.h5", save_format='h5')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# load model
 | 
					# load model
 | 
				
			||||||
estimator.load("/tmp/cifar10_model.h5")
 | 
					est.load("/tmp/cifar10_model.h5")
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
That's it, the same code can run seamlessly in your local laptop and to distribute K8s or Hadoop cluster.
 | 
					That's it, the same code can run seamlessly in your local laptop and to distribute K8s or Hadoop cluster.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue