quantized attention forward for minicpm (#11200)

* quantized minicpm

* fix style check
This commit is contained in:
Xin Qiu 2024-06-05 09:15:25 +08:00 committed by GitHub
parent bb83bc23fd
commit 566691c5a3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 410 additions and 1 deletions

View file

@ -1632,6 +1632,7 @@ def _optimize_post(model, lightweight_bmm=False):
)
elif model.config.model_type == 'minicpm':
from ipex_llm.transformers.models.minicpm import minicpm_attention_forward
from ipex_llm.transformers.models.minicpm import minicpm_model_forward
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(model,
@ -1643,5 +1644,8 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model,
module.MiniCPMAttention,
minicpm_attention_forward)
convert_forward(model,
module.MiniCPMModel,
minicpm_model_forward)
return model

View file

@ -57,6 +57,7 @@ from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.llama import should_use_fuse_rope, should_use_xetla_mm_qkv
from ipex_llm.transformers.models.llama import fuse_qkv_weight_xetla, repeat_kv, native_sdp
from ipex_llm.transformers.models.llama import llama_decoding_fast_path_qtype_check
from ipex_llm.transformers.models.llama import should_split_qkv_tensor, should_split_qkv_tensor
try:
from transformers.cache_utils import Cache, DynamicCache
@ -77,7 +78,10 @@ def minicpm_attention_forward(
cache_position: Optional[torch.LongTensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
forward_function = minicpm_attention_forward_original
if use_quantize_kv_cache(self.q_proj, hidden_states):
forward_function = minicpm_attention_forward_quantized
else:
forward_function = minicpm_attention_forward_original
return forward_function(
self=self,
hidden_states=hidden_states,
@ -364,3 +368,404 @@ def minicpm_attention_forward_original(
attn_weights = None
return attn_output.to(original_dtype), attn_weights, past_key_value
def minicpm_attention_forward_quantized(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[List[torch.FloatTensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
"Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
no_tp = not self.config.pretraining_tp > 1
decoding_fast_path = use_decoding_fast_path(self.q_proj,
use_fuse_rope,
enough_kv_room,
bsz * q_len,
llama_decoding_fast_path_qtype_check) and no_tp
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
tmp_cache_k, tmp_cache_v = init_kv_cache(
bsz,
self.num_key_value_heads,
self.head_dim,
0,
1,
dtype=hidden_states.dtype,
device=device
)
import xe_linear
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
tmp_cache_k, tmp_cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
0,
self.head_dim,
self.rotary_emb.base,)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(
False,
f"The cache structure has changed since version v4.36."
f" If you are using {self.__class__.__name__} "
f"for auto-regressive decoding with k/v caching,"
f" please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
if use_fuse_rope:
rope_theta = self.rotary_emb.base
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"llama",
rope_theta=rope_theta)
else:
if cache_position is not None:
# for transformers 4.38.0
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama2")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")
kv_seq_len = key_states.shape[-2]
if len(past_key_value.key_cache) <= self.layer_idx:
repeated_key_states = repeat_kv(key_states, self.num_key_value_groups)
repeated_value_states = repeat_kv(value_states, self.num_key_value_groups)
if should_split_qkv_tensor(query_states, bsz, self.num_heads,
q_len, kv_seq_len, output_attentions):
attn_output, _ = native_sdp_split_qkv_tensor(query_states, repeated_key_states,
repeated_value_states,
attention_mask, cache_position,
bsz, q_len, kv_seq_len, self.head_dim,
self.num_heads)
else:
attn_weights = torch.matmul(query_states, repeated_key_states
.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if cache_position is not None:
# for transformers 4.38.0
causal_mask = attention_mask[:, :, cache_position, : kv_seq_len]
attn_weights = attn_weights + causal_mask
else:
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
if attention_mask.size() != attn_mask_size:
invalidInputError(False,
f"Attention mask should be of size {attn_mask_size}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
if kv_seq_len >= 2048 or bsz >= 64:
# for memory considerations, do not upcast attention to fp32
# for long sequences or large batches
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
else:
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, repeated_value_states)
if use_cache:
cache_kwargs = None
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)
else:
cache_kwargs = None # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)
kv_seq_len = key_states.shape[-2]
if not use_sdp_fp8(q_len, key_states.shape[2], query_states):
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
key_states = repeat_kv(key_states, self.num_key_value_groups)\
.to(device, dtype=query_states.dtype)
value_states = repeat_kv(value_states, self.num_key_value_groups)\
.to(device, dtype=query_states.dtype)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
attn_weights = attn_weights / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention weights should be of size"
f" {(bsz, self.num_heads, q_len, kv_seq_len)},"
f" but is {attn_weights.size()}"
)
if attention_mask is not None:
if cache_position is not None:
# for transformers 4.38.0
causal_mask = attention_mask[:, :, cache_position, : kv_seq_len]
attn_weights = attn_weights + causal_mask
else:
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
if attention_mask.size() != attn_mask_size:
invalidInputError(False,
f"Attention mask should be of size {attn_mask_size}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
if kv_seq_len >= 2048 or bsz >= 64:
# for memory considerations, do not upcast attention to fp32
# for long sequences or large batches
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
else:
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
else:
import xe_addons
if cache_position is not None:
new_attn_mask = attention_mask[:, :, kv_seq_len-q_len:kv_seq_len, 0:kv_seq_len]
else:
new_attn_mask = attention_mask
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, new_attn_mask)
attn_weights = None
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
invalidInputError(
False,
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
f" but is {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size
// self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i],
o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def minicpm_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
from ipex_llm.transformers.kv import DynamicFp8Cache
use_cache = use_cache if use_cache is not None else self.config.use_cache
input = input_ids if input_ids is not None else inputs_embeds
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input):
if not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
return minicpm_model_forward_internal(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
def minicpm_model_forward_internal(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False,
"You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
invalidInputError(False,
"You have to specify either input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing."
" Setting `use_cache=False`..."
)
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length,
dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask)\
else None
elif self._use_sdpa and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
# bigdl-llm changes:
curr_device = decoder_layer.input_layernorm.weight.device
if attention_mask is not None:
attention_mask = attention_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# bigdl-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache \
else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)