quantized attention forward for minicpm (#11200)
* quantized minicpm * fix style check
This commit is contained in:
parent
bb83bc23fd
commit
566691c5a3
2 changed files with 410 additions and 1 deletions
|
|
@ -1632,6 +1632,7 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
)
|
||||
elif model.config.model_type == 'minicpm':
|
||||
from ipex_llm.transformers.models.minicpm import minicpm_attention_forward
|
||||
from ipex_llm.transformers.models.minicpm import minicpm_model_forward
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
convert_forward(model,
|
||||
|
|
@ -1643,5 +1644,8 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
convert_forward(model,
|
||||
module.MiniCPMAttention,
|
||||
minicpm_attention_forward)
|
||||
convert_forward(model,
|
||||
module.MiniCPMModel,
|
||||
minicpm_model_forward)
|
||||
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -57,6 +57,7 @@ from ipex_llm.utils.common import invalidInputError
|
|||
from ipex_llm.transformers.models.llama import should_use_fuse_rope, should_use_xetla_mm_qkv
|
||||
from ipex_llm.transformers.models.llama import fuse_qkv_weight_xetla, repeat_kv, native_sdp
|
||||
from ipex_llm.transformers.models.llama import llama_decoding_fast_path_qtype_check
|
||||
from ipex_llm.transformers.models.llama import should_split_qkv_tensor, should_split_qkv_tensor
|
||||
|
||||
try:
|
||||
from transformers.cache_utils import Cache, DynamicCache
|
||||
|
|
@ -77,7 +78,10 @@ def minicpm_attention_forward(
|
|||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
|
||||
forward_function = minicpm_attention_forward_original
|
||||
if use_quantize_kv_cache(self.q_proj, hidden_states):
|
||||
forward_function = minicpm_attention_forward_quantized
|
||||
else:
|
||||
forward_function = minicpm_attention_forward_original
|
||||
return forward_function(
|
||||
self=self,
|
||||
hidden_states=hidden_states,
|
||||
|
|
@ -364,3 +368,404 @@ def minicpm_attention_forward_original(
|
|||
attn_weights = None
|
||||
|
||||
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||
|
||||
|
||||
def minicpm_attention_forward_quantized(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[List[torch.FloatTensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
||||
"Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
|
||||
no_tp = not self.config.pretraining_tp > 1
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len,
|
||||
llama_decoding_fast_path_qtype_check) and no_tp
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
tmp_cache_k, tmp_cache_v = init_kv_cache(
|
||||
bsz,
|
||||
self.num_key_value_heads,
|
||||
self.head_dim,
|
||||
0,
|
||||
1,
|
||||
dtype=hidden_states.dtype,
|
||||
device=device
|
||||
)
|
||||
import xe_linear
|
||||
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||
self.q_proj.weight,
|
||||
self.k_proj.weight,
|
||||
self.v_proj.weight,
|
||||
position_ids,
|
||||
tmp_cache_k, tmp_cache_v,
|
||||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len,
|
||||
self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len,
|
||||
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(
|
||||
False,
|
||||
f"The cache structure has changed since version v4.36."
|
||||
f" If you are using {self.__class__.__name__} "
|
||||
f"for auto-regressive decoding with k/v caching,"
|
||||
f" please make sure to initialize the attention class "
|
||||
"with a layer index."
|
||||
)
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
if use_fuse_rope:
|
||||
rope_theta = self.rotary_emb.base
|
||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
"llama",
|
||||
rope_theta=rope_theta)
|
||||
else:
|
||||
if cache_position is not None:
|
||||
# for transformers 4.38.0
|
||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "llama2")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "llama")
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
repeated_key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
repeated_value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
if should_split_qkv_tensor(query_states, bsz, self.num_heads,
|
||||
q_len, kv_seq_len, output_attentions):
|
||||
attn_output, _ = native_sdp_split_qkv_tensor(query_states, repeated_key_states,
|
||||
repeated_value_states,
|
||||
attention_mask, cache_position,
|
||||
bsz, q_len, kv_seq_len, self.head_dim,
|
||||
self.num_heads)
|
||||
else:
|
||||
attn_weights = torch.matmul(query_states, repeated_key_states
|
||||
.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"Attention weights should be of size "
|
||||
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if cache_position is not None:
|
||||
# for transformers 4.38.0
|
||||
causal_mask = attention_mask[:, :, cache_position, : kv_seq_len]
|
||||
attn_weights = attn_weights + causal_mask
|
||||
else:
|
||||
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
|
||||
if attention_mask.size() != attn_mask_size:
|
||||
invalidInputError(False,
|
||||
f"Attention mask should be of size {attn_mask_size}, "
|
||||
f"but is {attention_mask.size()}")
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
if kv_seq_len >= 2048 or bsz >= 64:
|
||||
# for memory considerations, do not upcast attention to fp32
|
||||
# for long sequences or large batches
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
else:
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, repeated_value_states)
|
||||
if use_cache:
|
||||
cache_kwargs = None
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, cache_kwargs)
|
||||
else:
|
||||
cache_kwargs = None # Specific to RoPE models
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, cache_kwargs)
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if not use_sdp_fp8(q_len, key_states.shape[2], query_states):
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
query_states.dtype)
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)\
|
||||
.to(device, dtype=query_states.dtype)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)\
|
||||
.to(device, dtype=query_states.dtype)
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
||||
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"Attention weights should be of size"
|
||||
f" {(bsz, self.num_heads, q_len, kv_seq_len)},"
|
||||
f" but is {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if cache_position is not None:
|
||||
# for transformers 4.38.0
|
||||
causal_mask = attention_mask[:, :, cache_position, : kv_seq_len]
|
||||
attn_weights = attn_weights + causal_mask
|
||||
else:
|
||||
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
|
||||
if attention_mask.size() != attn_mask_size:
|
||||
invalidInputError(False,
|
||||
f"Attention mask should be of size {attn_mask_size}, "
|
||||
f"but is {attention_mask.size()}")
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
if kv_seq_len >= 2048 or bsz >= 64:
|
||||
# for memory considerations, do not upcast attention to fp32
|
||||
# for long sequences or large batches
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
else:
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
else:
|
||||
import xe_addons
|
||||
if cache_position is not None:
|
||||
new_attn_mask = attention_mask[:, :, kv_seq_len-q_len:kv_seq_len, 0:kv_seq_len]
|
||||
else:
|
||||
new_attn_mask = attention_mask
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, new_attn_mask)
|
||||
attn_weights = None
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
|
||||
f" but is {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
if self.config.pretraining_tp > 1:
|
||||
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||||
o_proj_slices = self.o_proj.weight.split(self.hidden_size
|
||||
// self.config.pretraining_tp, dim=1)
|
||||
attn_output = sum([F.linear(attn_output[i],
|
||||
o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
||||
else:
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
def minicpm_model_forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
from ipex_llm.transformers.kv import DynamicFp8Cache
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
input = input_ids if input_ids is not None else inputs_embeds
|
||||
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input):
|
||||
if not isinstance(past_key_values, DynamicFp8Cache):
|
||||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||
return minicpm_model_forward_internal(
|
||||
self=self,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
|
||||
def minicpm_model_forward_internal(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None \
|
||||
else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
invalidInputError(False,
|
||||
"You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape[:2]
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length = inputs_embeds.shape[:2]
|
||||
else:
|
||||
invalidInputError(False,
|
||||
"You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing."
|
||||
" Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
past_key_values_length = 0
|
||||
if use_cache:
|
||||
use_legacy_cache = not isinstance(past_key_values, Cache)
|
||||
if use_legacy_cache:
|
||||
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||||
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length, seq_length + past_key_values_length,
|
||||
dtype=torch.long, device=device
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
|
||||
|
||||
if self._use_flash_attention_2:
|
||||
# 2d mask is passed through the layers
|
||||
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask)\
|
||||
else None
|
||||
elif self._use_sdpa and not output_attentions:
|
||||
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
||||
# the manual implementation that requires a 4D causal mask in all cases.
|
||||
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa
|
||||
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
||||
attention_mask,
|
||||
(batch_size, seq_length),
|
||||
inputs_embeds,
|
||||
past_key_values_length,
|
||||
)
|
||||
else:
|
||||
# 4d mask is passed through the layers
|
||||
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
||||
attention_mask = _prepare_4d_causal_attention_mask(
|
||||
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
||||
)
|
||||
|
||||
# embed positions
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = None
|
||||
|
||||
for decoder_layer in self.layers:
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
past_key_values,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
)
|
||||
else:
|
||||
# bigdl-llm changes:
|
||||
curr_device = decoder_layer.input_layernorm.weight.device
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask.to(curr_device)
|
||||
if position_ids is not None:
|
||||
position_ids = position_ids.to(curr_device)
|
||||
# bigdl-llm changes end
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = None
|
||||
if use_cache:
|
||||
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache \
|
||||
else next_decoder_cache
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||
if v is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
|
|
|||
Loading…
Reference in a new issue