optimize qwen2_vl multiple image input or video input (#12487)

This commit is contained in:
Yishuo Wang 2024-12-04 09:24:38 +08:00 committed by GitHub
parent c59284418c
commit 5629fdd518
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -191,37 +191,66 @@ def qwen2_vision_attention_forward(
).permute(1, 0, 2, 3).unbind(0) ).permute(1, 0, 2, 3).unbind(0)
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
# q, k, v: [seq_length, num_heads, head_dim]
q = q.transpose(0, 1) seq_lens = cu_seqlens.tolist()
k = k.transpose(0, 1) invalidInputError(seq_lens[0] == 0 and seq_lens[-1] == seq_length,
v = v.transpose(0, 1) "unexpected input")
if len(cu_seqlens) == 2 and cu_seqlens.tolist() == [0, seq_length]: if use_sdp_non_causal(self.head_dim, q.device, q.dtype):
attention_mask = None import xe_addons
image_num = len(seq_lens) - 1
image_size = seq_lens[1] - seq_lens[0]
guessed_seq_lens = torch.arange(0, (image_num + 1) * image_size, image_size,
dtype=cu_seqlens.dtype, device=cu_seqlens.device)
if (guessed_seq_lens == cu_seqlens).all():
q = q.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
k = k.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
v = v.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
# q, k, v: [image_num, num_heads, image_size, head_dim]
attn_output = xe_addons.sdp_non_causal(q, k.contiguous(), v.contiguous(), None)
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
attn_output = attn_output.view(seq_length, self.num_heads, self.head_dim)
# attn_output: [seq_length, num_heads, head_dim]
else:
q = q.transpose(0, 1).unsqueeze(0)
k = k.transpose(0, 1).unsqueeze(0).contiguous()
v = v.transpose(0, 1).unsqueeze(0).contiguous()
# q, k, v: [1, num_heads, seq_length, head_dim]
attn_outputs = []
for i in range(image_num):
start_idx = seq_lens[i]
end_idx = seq_lens[i + 1]
tmp_q = q[:, :, start_idx:end_idx, :]
tmp_k = k[:, :, start_idx:end_idx, :]
tmp_v = v[:, :, start_idx:end_idx, :]
attn_output = xe_addons.sdp_non_causal(tmp_q, tmp_k, tmp_v, None)
attn_output = attn_output.permute(0, 2, 1, 3)
# attn_output: [1, seq_length, num_heads, head_dim]
attn_outputs.append(attn_output)
attn_output = torch.cat(attn_outputs, dim=1).squeeze(0)
# attn_output: [seq_length, num_heads, head_dim]
else: else:
attention_mask = torch.full( attention_mask = torch.full(
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
) )
for i in range(1, len(cu_seqlens)): for i in range(1, len(seq_lens)):
attention_mask[..., cu_seqlens[i - 1]:cu_seqlens[i], attention_mask[..., seq_lens[i - 1]:seq_lens[i], seq_lens[i - 1]:seq_lens[i]] = 0
cu_seqlens[i - 1]:cu_seqlens[i]] = 0
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
# q, k, v: [num_heads, seq_length, head_dim]
if use_sdp_non_causal(self.head_dim, q.device, q.dtype):
import xe_addons
q = q.unsqueeze(0)
k = k.unsqueeze(0)
v = v.unsqueeze(0)
if attention_mask is not None:
attention_mask = attention_mask.unsqueeze(0)
attn_output = xe_addons.sdp_non_causal(q, k.contiguous(), v.contiguous(), attention_mask)
attn_output = attn_output.squeeze(0)
else:
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim) attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
if attention_mask is not None: attn_weights = attn_weights + attention_mask
attn_weights = attn_weights + attention_mask
attn_weights = attention_softmax(attn_weights) attn_weights = attention_softmax(attn_weights)
attn_output = torch.matmul(attn_weights, v) attn_output = torch.matmul(attn_weights, v)
attn_output = attn_output.transpose(0, 1) attn_output = attn_output.transpose(0, 1)
# attn_output: [seq_length, num_heads, head_dim]
attn_output = attn_output.reshape(seq_length, -1) attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output) attn_output = self.proj(attn_output)
return attn_output return attn_output