optimize qwen2_vl multiple image input or video input (#12487)
This commit is contained in:
parent
c59284418c
commit
5629fdd518
1 changed files with 50 additions and 21 deletions
|
|
@ -191,37 +191,66 @@ def qwen2_vision_attention_forward(
|
||||||
).permute(1, 0, 2, 3).unbind(0)
|
).permute(1, 0, 2, 3).unbind(0)
|
||||||
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
||||||
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
||||||
|
# q, k, v: [seq_length, num_heads, head_dim]
|
||||||
|
|
||||||
q = q.transpose(0, 1)
|
seq_lens = cu_seqlens.tolist()
|
||||||
k = k.transpose(0, 1)
|
invalidInputError(seq_lens[0] == 0 and seq_lens[-1] == seq_length,
|
||||||
v = v.transpose(0, 1)
|
"unexpected input")
|
||||||
|
|
||||||
if len(cu_seqlens) == 2 and cu_seqlens.tolist() == [0, seq_length]:
|
if use_sdp_non_causal(self.head_dim, q.device, q.dtype):
|
||||||
attention_mask = None
|
import xe_addons
|
||||||
|
image_num = len(seq_lens) - 1
|
||||||
|
image_size = seq_lens[1] - seq_lens[0]
|
||||||
|
guessed_seq_lens = torch.arange(0, (image_num + 1) * image_size, image_size,
|
||||||
|
dtype=cu_seqlens.dtype, device=cu_seqlens.device)
|
||||||
|
if (guessed_seq_lens == cu_seqlens).all():
|
||||||
|
q = q.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
||||||
|
k = k.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
||||||
|
v = v.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
||||||
|
# q, k, v: [image_num, num_heads, image_size, head_dim]
|
||||||
|
|
||||||
|
attn_output = xe_addons.sdp_non_causal(q, k.contiguous(), v.contiguous(), None)
|
||||||
|
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
|
||||||
|
attn_output = attn_output.view(seq_length, self.num_heads, self.head_dim)
|
||||||
|
# attn_output: [seq_length, num_heads, head_dim]
|
||||||
|
else:
|
||||||
|
q = q.transpose(0, 1).unsqueeze(0)
|
||||||
|
k = k.transpose(0, 1).unsqueeze(0).contiguous()
|
||||||
|
v = v.transpose(0, 1).unsqueeze(0).contiguous()
|
||||||
|
# q, k, v: [1, num_heads, seq_length, head_dim]
|
||||||
|
|
||||||
|
attn_outputs = []
|
||||||
|
for i in range(image_num):
|
||||||
|
start_idx = seq_lens[i]
|
||||||
|
end_idx = seq_lens[i + 1]
|
||||||
|
tmp_q = q[:, :, start_idx:end_idx, :]
|
||||||
|
tmp_k = k[:, :, start_idx:end_idx, :]
|
||||||
|
tmp_v = v[:, :, start_idx:end_idx, :]
|
||||||
|
attn_output = xe_addons.sdp_non_causal(tmp_q, tmp_k, tmp_v, None)
|
||||||
|
attn_output = attn_output.permute(0, 2, 1, 3)
|
||||||
|
# attn_output: [1, seq_length, num_heads, head_dim]
|
||||||
|
attn_outputs.append(attn_output)
|
||||||
|
attn_output = torch.cat(attn_outputs, dim=1).squeeze(0)
|
||||||
|
# attn_output: [seq_length, num_heads, head_dim]
|
||||||
else:
|
else:
|
||||||
attention_mask = torch.full(
|
attention_mask = torch.full(
|
||||||
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
||||||
)
|
)
|
||||||
for i in range(1, len(cu_seqlens)):
|
for i in range(1, len(seq_lens)):
|
||||||
attention_mask[..., cu_seqlens[i - 1]:cu_seqlens[i],
|
attention_mask[..., seq_lens[i - 1]:seq_lens[i], seq_lens[i - 1]:seq_lens[i]] = 0
|
||||||
cu_seqlens[i - 1]:cu_seqlens[i]] = 0
|
|
||||||
|
q = q.transpose(0, 1)
|
||||||
|
k = k.transpose(0, 1)
|
||||||
|
v = v.transpose(0, 1)
|
||||||
|
# q, k, v: [num_heads, seq_length, head_dim]
|
||||||
|
|
||||||
if use_sdp_non_causal(self.head_dim, q.device, q.dtype):
|
|
||||||
import xe_addons
|
|
||||||
q = q.unsqueeze(0)
|
|
||||||
k = k.unsqueeze(0)
|
|
||||||
v = v.unsqueeze(0)
|
|
||||||
if attention_mask is not None:
|
|
||||||
attention_mask = attention_mask.unsqueeze(0)
|
|
||||||
attn_output = xe_addons.sdp_non_causal(q, k.contiguous(), v.contiguous(), attention_mask)
|
|
||||||
attn_output = attn_output.squeeze(0)
|
|
||||||
else:
|
|
||||||
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
|
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
|
||||||
if attention_mask is not None:
|
attn_weights = attn_weights + attention_mask
|
||||||
attn_weights = attn_weights + attention_mask
|
|
||||||
attn_weights = attention_softmax(attn_weights)
|
attn_weights = attention_softmax(attn_weights)
|
||||||
attn_output = torch.matmul(attn_weights, v)
|
attn_output = torch.matmul(attn_weights, v)
|
||||||
attn_output = attn_output.transpose(0, 1)
|
attn_output = attn_output.transpose(0, 1)
|
||||||
|
# attn_output: [seq_length, num_heads, head_dim]
|
||||||
|
|
||||||
attn_output = attn_output.reshape(seq_length, -1)
|
attn_output = attn_output.reshape(seq_length, -1)
|
||||||
attn_output = self.proj(attn_output)
|
attn_output = self.proj(attn_output)
|
||||||
return attn_output
|
return attn_output
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue