add convert-gptq-to-ggml.py to bigdl-llama (#8298)

This commit is contained in:
Xin Qiu 2023-06-14 14:51:51 +08:00 committed by GitHub
parent a6c4b733cb
commit 5576679a92

View file

@ -0,0 +1,244 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# Convert a GPTQ quantized LLaMA model to a ggml compatible file
# Based on: https://github.com/ggerganov/llama.cpp
# /blob/20a1a4e09c522a80e2a0db51643d25fa38326065/convert-gptq-to-ggml.py
# Current supported GPTQ model: 4bits, no act-order, no safetensors.
#
import os
import re
import sys
import json
import struct
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor
from bigdl.llm.utils.common.log4Error import invalidInputError
def write_header(fout, shape, dst_name, ftype_cur):
sname = dst_name.encode('utf-8')
fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)
fout.seek((fout.tell() + 31) & -32)
def convert_non_q4(src_name, dst_name, model, fout):
v = model[src_name]
shape = v.shape
print("Processing non-Q4 variable: " + src_name +
" with shape: ", shape, " and type: ", v.dtype)
if len(shape) == 1:
print(" Converting to float32")
v = v.to(torch.float32)
ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype]
# header
write_header(fout, shape, dst_name, ftype_cur)
# data
v.numpy().tofile(fout)
def expandToInt4(qweight):
eweight = qweight.repeat(8, axis=2)
eweight = eweight.astype(np.uint32)
for i in range(0, eweight.shape[2]):
offset = i % (32 // 4) * 4
eweight[:, :, i] = eweight[:, :, i] >> offset & (2 ** 4 - 1)
return eweight
def to_ggml_int16(eweight):
qweight = np.zeros((eweight.shape[0], eweight.shape[1], eweight.shape[2] // 4), dtype=np.uint16)
eweight = np.asarray(eweight, dtype=np.uint16)
for i in range(0, qweight.shape[2]):
qweight[:, :, i] = eweight[:, :, i * 2 + 0]
qweight[:, :, i] |= eweight[:, :, i * 2 + 32] << 1 * 4
qweight[:, :, i] |= eweight[:, :, i * 2 + 1] << 2 * 4
qweight[:, :, i] |= eweight[:, :, i * 2 + 33] << 3 * 4
return qweight.astype(np.int16)
def qzeros_to_zeros(qzeros, bits=4):
zeros = np.zeros((qzeros.shape[0], qzeros.shape[1] * (32 // bits)), dtype=np.float32)
i = 0
col = 0
while col < qzeros.shape[1]:
for j in range(i, i + (32 // bits)):
zeros[:, j] = (qzeros[:, col] >> (bits * (j - i)) & (2 ** bits - 1)) + 1
i += 32 // bits
col += 1
return zeros
def convert_q4(src_name, dst_name, model, fout, n_head, permute=False):
qzeros = model[f"{src_name}.qzeros"].numpy()
zeros = qzeros_to_zeros(qzeros).T
scales = model[f"{src_name}.scales"].numpy().T
g_idx = model[f"{src_name}.g_idx"].numpy()
qweight = model[f"{src_name}.qweight"].numpy().T # transpose
# Q4_1 does not support bias; good thing the bias is always all zeros.
invalidInputError(np.all(g_idx[:-1] <= g_idx[1:]),
"Act-order is not supported, please use a no act-order model.")
ftype = 3 # Q4_1
# Each int32 item is actually 8 int4 items packed together, and it's transposed.
shape = (qweight.shape[0], qweight.shape[1] * 8)
print("Processing Q4 variable: " + src_name + " with shape: ", shape)
# The output format has the int4 weights in groups of 32 rather than 8.
# It looks like this:
# For each row:
# For each group of 32 columns:
# - addend (float32, 4 bytes)
# - scale (float32, 4 bytes)
# - weights (int4 * 32, 16 bytes)
# Note that in the input, the scales and addends are shared between all
# the columns in a row, so we end up wasting quite a bit of memory with
# repeated scales and addends.
addends = -zeros * scales # flip sign
# Since the output format is mixed between integers and floats, we have
# to hackily view the floats as int32s just so numpy will let us
# concatenate them.
addends_view = np.asarray(addends, dtype=np.float16).view(dtype=np.int16)
scales_view = np.asarray(scales, dtype=np.float16).view(dtype=np.int16)
# Split into groups of 8 columns (i.e. 64 columns of quantized data):
# TODO: Only support act-order=false
expanded = expandToInt4(qweight.reshape([qweight.shape[0], qweight.shape[1] // 8, 8]))
grouped = to_ggml_int16(expanded)
# Repeat addends and scales:
if addends_view.shape[1] == grouped.shape[1]:
addends_rep = np.atleast_3d(addends_view)
scales_rep = np.atleast_3d(scales_view)
else:
addends_rep = np.atleast_3d(addends_view)\
.repeat(grouped.shape[1] // addends_view.shape[1], axis=1)
scales_rep = np.atleast_3d(scales_view)\
.repeat(grouped.shape[1] // scales_view.shape[1], axis=1)
blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no')
if permute:
# Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py.
# This can be done after the above conversion because it doesn't affect column order/layout.
blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:])
.swapaxes(1, 2)
.reshape(blob.shape))
# header
write_header(fout, shape, dst_name, ftype) # ftype = Q4_1
# data
blob.tofile(fout)
def convert_gptq2ggml(model_path, tokenizer_path, output_path):
model = torch.load(model_path, map_location="cpu")
n_vocab, n_embd = model['model.embed_tokens.weight'].shape
layer_re = r'model\.layers\.([0-9]+)'
n_layer = 1 + max(int(re.match(layer_re, name).group(1)) for name in model
if re.match(layer_re, name))
# hardcoded:
n_mult = 256
n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer]
tokenizer = SentencePieceProcessor(tokenizer_path)
invalidInputError(tokenizer.vocab_size() == n_vocab, "vocab size not match.")
fout = open(output_path, "wb")
fout.write(b"ggjt"[::-1]) # magic: ggmf in hex
values = [3, # file version
n_vocab,
n_embd,
n_mult,
n_head,
n_layer,
n_embd // n_head, # rot (obsolete)
4]
fout.write(struct.pack("i" * len(values), *values))
# This loop unchanged from convert-pth-to-ggml.py:
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print(f"Invalid token: {piece}")
sys.exit(1)
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight", model, fout)
convert_non_q4("model.norm.weight", "norm.weight", model, fout)
convert_non_q4("lm_head.weight", "output.weight", model, fout)
for i in range(n_layer):
convert_q4(f"model.layers.{i}.self_attn.q_proj",
f"layers.{i}.attention.wq.weight", model, fout, n_head, permute=True)
convert_q4(f"model.layers.{i}.self_attn.k_proj",
f"layers.{i}.attention.wk.weight", model, fout, n_head, permute=True)
convert_q4(f"model.layers.{i}.self_attn.v_proj",
f"layers.{i}.attention.wv.weight", model, fout, n_head)
convert_q4(f"model.layers.{i}.self_attn.o_proj",
f"layers.{i}.attention.wo.weight", model, fout, n_head)
convert_q4(f"model.layers.{i}.mlp.gate_proj",
f"layers.{i}.feed_forward.w1.weight", model, fout, n_head)
convert_q4(f"model.layers.{i}.mlp.down_proj",
f"layers.{i}.feed_forward.w2.weight", model, fout, n_head)
convert_q4(f"model.layers.{i}.mlp.up_proj",
f"layers.{i}.feed_forward.w3.weight", model, fout, n_head)
convert_non_q4(f"model.layers.{i}.input_layernorm.weight",
f"layers.{i}.attention_norm.weight", model, fout)
convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight",
f"layers.{i}.ffn_norm.weight", model, fout)
fout.close()
print("Done. Output file: " + output_path)
print("")
if __name__ == "__main__":
if len(sys.argv) != 4:
print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n")
sys.exit(1)
fname_model = sys.argv[1]
fname_tokenizer = sys.argv[2]
out_path = sys.argv[3]
invalidInputError(fname_model.endswith(".pt"), "only support pytorch's .pt format now.")
convert_gptq2ggml(fname_model, fname_tokenizer, out_path)