add convert-gptq-to-ggml.py to bigdl-llama (#8298)
This commit is contained in:
parent
a6c4b733cb
commit
5576679a92
1 changed files with 244 additions and 0 deletions
244
python/llm/src/bigdl/llm/gptq/convert/convert-gptq-to-ggml.py
Normal file
244
python/llm/src/bigdl/llm/gptq/convert/convert-gptq-to-ggml.py
Normal file
|
|
@ -0,0 +1,244 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Convert a GPTQ quantized LLaMA model to a ggml compatible file
|
||||||
|
# Based on: https://github.com/ggerganov/llama.cpp
|
||||||
|
# /blob/20a1a4e09c522a80e2a0db51643d25fa38326065/convert-gptq-to-ggml.py
|
||||||
|
# Current supported GPTQ model: 4bits, no act-order, no safetensors.
|
||||||
|
#
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
import json
|
||||||
|
import struct
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
from bigdl.llm.utils.common.log4Error import invalidInputError
|
||||||
|
|
||||||
|
|
||||||
|
def write_header(fout, shape, dst_name, ftype_cur):
|
||||||
|
sname = dst_name.encode('utf-8')
|
||||||
|
fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
|
||||||
|
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
||||||
|
fout.write(sname)
|
||||||
|
fout.seek((fout.tell() + 31) & -32)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_non_q4(src_name, dst_name, model, fout):
|
||||||
|
v = model[src_name]
|
||||||
|
shape = v.shape
|
||||||
|
print("Processing non-Q4 variable: " + src_name +
|
||||||
|
" with shape: ", shape, " and type: ", v.dtype)
|
||||||
|
if len(shape) == 1:
|
||||||
|
print(" Converting to float32")
|
||||||
|
v = v.to(torch.float32)
|
||||||
|
|
||||||
|
ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype]
|
||||||
|
|
||||||
|
# header
|
||||||
|
write_header(fout, shape, dst_name, ftype_cur)
|
||||||
|
|
||||||
|
# data
|
||||||
|
v.numpy().tofile(fout)
|
||||||
|
|
||||||
|
|
||||||
|
def expandToInt4(qweight):
|
||||||
|
eweight = qweight.repeat(8, axis=2)
|
||||||
|
eweight = eweight.astype(np.uint32)
|
||||||
|
for i in range(0, eweight.shape[2]):
|
||||||
|
offset = i % (32 // 4) * 4
|
||||||
|
eweight[:, :, i] = eweight[:, :, i] >> offset & (2 ** 4 - 1)
|
||||||
|
return eweight
|
||||||
|
|
||||||
|
|
||||||
|
def to_ggml_int16(eweight):
|
||||||
|
qweight = np.zeros((eweight.shape[0], eweight.shape[1], eweight.shape[2] // 4), dtype=np.uint16)
|
||||||
|
eweight = np.asarray(eweight, dtype=np.uint16)
|
||||||
|
for i in range(0, qweight.shape[2]):
|
||||||
|
qweight[:, :, i] = eweight[:, :, i * 2 + 0]
|
||||||
|
qweight[:, :, i] |= eweight[:, :, i * 2 + 32] << 1 * 4
|
||||||
|
qweight[:, :, i] |= eweight[:, :, i * 2 + 1] << 2 * 4
|
||||||
|
qweight[:, :, i] |= eweight[:, :, i * 2 + 33] << 3 * 4
|
||||||
|
return qweight.astype(np.int16)
|
||||||
|
|
||||||
|
|
||||||
|
def qzeros_to_zeros(qzeros, bits=4):
|
||||||
|
zeros = np.zeros((qzeros.shape[0], qzeros.shape[1] * (32 // bits)), dtype=np.float32)
|
||||||
|
i = 0
|
||||||
|
col = 0
|
||||||
|
while col < qzeros.shape[1]:
|
||||||
|
for j in range(i, i + (32 // bits)):
|
||||||
|
zeros[:, j] = (qzeros[:, col] >> (bits * (j - i)) & (2 ** bits - 1)) + 1
|
||||||
|
i += 32 // bits
|
||||||
|
col += 1
|
||||||
|
return zeros
|
||||||
|
|
||||||
|
|
||||||
|
def convert_q4(src_name, dst_name, model, fout, n_head, permute=False):
|
||||||
|
qzeros = model[f"{src_name}.qzeros"].numpy()
|
||||||
|
zeros = qzeros_to_zeros(qzeros).T
|
||||||
|
scales = model[f"{src_name}.scales"].numpy().T
|
||||||
|
g_idx = model[f"{src_name}.g_idx"].numpy()
|
||||||
|
qweight = model[f"{src_name}.qweight"].numpy().T # transpose
|
||||||
|
|
||||||
|
# Q4_1 does not support bias; good thing the bias is always all zeros.
|
||||||
|
invalidInputError(np.all(g_idx[:-1] <= g_idx[1:]),
|
||||||
|
"Act-order is not supported, please use a no act-order model.")
|
||||||
|
ftype = 3 # Q4_1
|
||||||
|
|
||||||
|
# Each int32 item is actually 8 int4 items packed together, and it's transposed.
|
||||||
|
shape = (qweight.shape[0], qweight.shape[1] * 8)
|
||||||
|
|
||||||
|
print("Processing Q4 variable: " + src_name + " with shape: ", shape)
|
||||||
|
|
||||||
|
# The output format has the int4 weights in groups of 32 rather than 8.
|
||||||
|
# It looks like this:
|
||||||
|
# For each row:
|
||||||
|
# For each group of 32 columns:
|
||||||
|
# - addend (float32, 4 bytes)
|
||||||
|
# - scale (float32, 4 bytes)
|
||||||
|
# - weights (int4 * 32, 16 bytes)
|
||||||
|
# Note that in the input, the scales and addends are shared between all
|
||||||
|
# the columns in a row, so we end up wasting quite a bit of memory with
|
||||||
|
# repeated scales and addends.
|
||||||
|
|
||||||
|
addends = -zeros * scales # flip sign
|
||||||
|
|
||||||
|
# Since the output format is mixed between integers and floats, we have
|
||||||
|
# to hackily view the floats as int32s just so numpy will let us
|
||||||
|
# concatenate them.
|
||||||
|
addends_view = np.asarray(addends, dtype=np.float16).view(dtype=np.int16)
|
||||||
|
scales_view = np.asarray(scales, dtype=np.float16).view(dtype=np.int16)
|
||||||
|
|
||||||
|
# Split into groups of 8 columns (i.e. 64 columns of quantized data):
|
||||||
|
# TODO: Only support act-order=false
|
||||||
|
expanded = expandToInt4(qweight.reshape([qweight.shape[0], qweight.shape[1] // 8, 8]))
|
||||||
|
grouped = to_ggml_int16(expanded)
|
||||||
|
|
||||||
|
# Repeat addends and scales:
|
||||||
|
if addends_view.shape[1] == grouped.shape[1]:
|
||||||
|
addends_rep = np.atleast_3d(addends_view)
|
||||||
|
scales_rep = np.atleast_3d(scales_view)
|
||||||
|
else:
|
||||||
|
addends_rep = np.atleast_3d(addends_view)\
|
||||||
|
.repeat(grouped.shape[1] // addends_view.shape[1], axis=1)
|
||||||
|
scales_rep = np.atleast_3d(scales_view)\
|
||||||
|
.repeat(grouped.shape[1] // scales_view.shape[1], axis=1)
|
||||||
|
|
||||||
|
blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no')
|
||||||
|
|
||||||
|
if permute:
|
||||||
|
# Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py.
|
||||||
|
# This can be done after the above conversion because it doesn't affect column order/layout.
|
||||||
|
blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:])
|
||||||
|
.swapaxes(1, 2)
|
||||||
|
.reshape(blob.shape))
|
||||||
|
|
||||||
|
# header
|
||||||
|
write_header(fout, shape, dst_name, ftype) # ftype = Q4_1
|
||||||
|
|
||||||
|
# data
|
||||||
|
blob.tofile(fout)
|
||||||
|
|
||||||
|
|
||||||
|
def convert_gptq2ggml(model_path, tokenizer_path, output_path):
|
||||||
|
model = torch.load(model_path, map_location="cpu")
|
||||||
|
|
||||||
|
n_vocab, n_embd = model['model.embed_tokens.weight'].shape
|
||||||
|
layer_re = r'model\.layers\.([0-9]+)'
|
||||||
|
n_layer = 1 + max(int(re.match(layer_re, name).group(1)) for name in model
|
||||||
|
if re.match(layer_re, name))
|
||||||
|
|
||||||
|
# hardcoded:
|
||||||
|
n_mult = 256
|
||||||
|
n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer]
|
||||||
|
|
||||||
|
tokenizer = SentencePieceProcessor(tokenizer_path)
|
||||||
|
|
||||||
|
invalidInputError(tokenizer.vocab_size() == n_vocab, "vocab size not match.")
|
||||||
|
|
||||||
|
fout = open(output_path, "wb")
|
||||||
|
|
||||||
|
fout.write(b"ggjt"[::-1]) # magic: ggmf in hex
|
||||||
|
values = [3, # file version
|
||||||
|
n_vocab,
|
||||||
|
n_embd,
|
||||||
|
n_mult,
|
||||||
|
n_head,
|
||||||
|
n_layer,
|
||||||
|
n_embd // n_head, # rot (obsolete)
|
||||||
|
4]
|
||||||
|
fout.write(struct.pack("i" * len(values), *values))
|
||||||
|
|
||||||
|
# This loop unchanged from convert-pth-to-ggml.py:
|
||||||
|
for i in range(tokenizer.vocab_size()):
|
||||||
|
if tokenizer.is_unknown(i):
|
||||||
|
text = " \u2047 ".encode("utf-8")
|
||||||
|
elif tokenizer.is_control(i):
|
||||||
|
text = b""
|
||||||
|
elif tokenizer.is_byte(i):
|
||||||
|
piece = tokenizer.id_to_piece(i)
|
||||||
|
if len(piece) != 6:
|
||||||
|
print(f"Invalid token: {piece}")
|
||||||
|
sys.exit(1)
|
||||||
|
byte_value = int(piece[3:-1], 16)
|
||||||
|
text = struct.pack("B", byte_value)
|
||||||
|
else:
|
||||||
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
||||||
|
fout.write(struct.pack("i", len(text)))
|
||||||
|
fout.write(text)
|
||||||
|
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
||||||
|
|
||||||
|
convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight", model, fout)
|
||||||
|
convert_non_q4("model.norm.weight", "norm.weight", model, fout)
|
||||||
|
convert_non_q4("lm_head.weight", "output.weight", model, fout)
|
||||||
|
|
||||||
|
for i in range(n_layer):
|
||||||
|
convert_q4(f"model.layers.{i}.self_attn.q_proj",
|
||||||
|
f"layers.{i}.attention.wq.weight", model, fout, n_head, permute=True)
|
||||||
|
convert_q4(f"model.layers.{i}.self_attn.k_proj",
|
||||||
|
f"layers.{i}.attention.wk.weight", model, fout, n_head, permute=True)
|
||||||
|
convert_q4(f"model.layers.{i}.self_attn.v_proj",
|
||||||
|
f"layers.{i}.attention.wv.weight", model, fout, n_head)
|
||||||
|
convert_q4(f"model.layers.{i}.self_attn.o_proj",
|
||||||
|
f"layers.{i}.attention.wo.weight", model, fout, n_head)
|
||||||
|
convert_q4(f"model.layers.{i}.mlp.gate_proj",
|
||||||
|
f"layers.{i}.feed_forward.w1.weight", model, fout, n_head)
|
||||||
|
convert_q4(f"model.layers.{i}.mlp.down_proj",
|
||||||
|
f"layers.{i}.feed_forward.w2.weight", model, fout, n_head)
|
||||||
|
convert_q4(f"model.layers.{i}.mlp.up_proj",
|
||||||
|
f"layers.{i}.feed_forward.w3.weight", model, fout, n_head)
|
||||||
|
|
||||||
|
convert_non_q4(f"model.layers.{i}.input_layernorm.weight",
|
||||||
|
f"layers.{i}.attention_norm.weight", model, fout)
|
||||||
|
convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight",
|
||||||
|
f"layers.{i}.ffn_norm.weight", model, fout)
|
||||||
|
fout.close()
|
||||||
|
print("Done. Output file: " + output_path)
|
||||||
|
print("")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
if len(sys.argv) != 4:
|
||||||
|
print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
fname_model = sys.argv[1]
|
||||||
|
fname_tokenizer = sys.argv[2]
|
||||||
|
out_path = sys.argv[3]
|
||||||
|
invalidInputError(fname_model.endswith(".pt"), "only support pytorch's .pt format now.")
|
||||||
|
convert_gptq2ggml(fname_model, fname_tokenizer, out_path)
|
||||||
Loading…
Reference in a new issue