LLM: update convert of llama family to support llama2-70B (#8747)
This commit is contained in:
parent
4afea496ab
commit
548f7a6cf7
2 changed files with 265 additions and 78 deletions
|
|
@ -54,14 +54,14 @@ def _convert_llama(model_path, outfile_dir, outtype):
|
|||
vocab = model_plus.vocab
|
||||
else:
|
||||
vocab_dir = model_plus.paths[0].parent
|
||||
vocab = load_vocab(vocab_dir)
|
||||
vocab = load_vocab(vocab_dir, vocabtype='spm')
|
||||
params = Params.load(model_plus)
|
||||
model = model_plus.model
|
||||
model = do_necessary_conversions(model)
|
||||
model = do_necessary_conversions(model, params)
|
||||
output_type = pick_output_type(model, outtype)
|
||||
model = convert_to_output_type(model, output_type)
|
||||
params = Params.guessed(model, output_type)
|
||||
outfile_path = default_outfile(outfile_dir, params)
|
||||
OutputFile.write_all(outfile_path, params, model, vocab)
|
||||
outfile_path = default_outfile([outfile_dir], output_type)
|
||||
OutputFile.write_all(outfile_path, params, output_type, model, vocab)
|
||||
|
||||
|
||||
def _convert_gptneox(model_path, outfile_dir, outtype):
|
||||
|
|
|
|||
|
|
@ -188,39 +188,141 @@ TENSORS_LIST = make_tensors_list()
|
|||
TENSORS_SET = set(TENSORS_LIST)
|
||||
|
||||
|
||||
def find_n_mult(n_ff: int, n_embd: int) -> int:
|
||||
# hardcoded magic range
|
||||
for n_mult in range(8192, 1, -1):
|
||||
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
|
||||
if calc_ff == n_ff:
|
||||
return n_mult
|
||||
invalidInputError(False,
|
||||
f"Failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
|
||||
|
||||
|
||||
@dataclass
|
||||
class Params:
|
||||
n_vocab: int
|
||||
n_embd: int
|
||||
n_mult: int
|
||||
n_head: int
|
||||
n_layer: int
|
||||
file_type: GGMLFileType
|
||||
n_vocab: int
|
||||
n_embd: int
|
||||
n_mult: int
|
||||
n_head: int
|
||||
n_layer: int
|
||||
n_kv_head: Optional[int] # This parameter is only used for Llama 2
|
||||
|
||||
@staticmethod
|
||||
def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params':
|
||||
n_vocab, n_embd = model["tok_embeddings.weight"].shape
|
||||
def guessed(model: 'LazyModel') -> 'Params':
|
||||
# try transformer naming first
|
||||
if "model.embed_tokens.weight" in model:
|
||||
n_vocab, n_embd = model["model.embed_tokens.weight"].shape
|
||||
else:
|
||||
n_vocab, n_embd = model["tok_embeddings.weight"].shape
|
||||
|
||||
# try transformer naming first
|
||||
if "model.layers.0.self_attn.q_proj.weight" in model:
|
||||
n_layer = next(i for i in itertools.count()
|
||||
if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
|
||||
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
|
||||
n_layer = next(i for i in itertools.count()
|
||||
if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
|
||||
else:
|
||||
n_layer = next(i for i in itertools.count()
|
||||
if f"layers.{i}.attention.wq.weight" not in model)
|
||||
|
||||
if n_layer < 1:
|
||||
invalidInputError(False, "Failed to guess 'n_layer'. This model is unknown or "
|
||||
"unsupported.\nSuggestion: provide 'config.json' of the "
|
||||
"model in the same directory containing model files.")
|
||||
|
||||
n_head = n_embd // 128 # guessed
|
||||
|
||||
return Params(
|
||||
n_vocab=n_vocab,
|
||||
n_embd=n_embd,
|
||||
n_mult=256,
|
||||
n_head=n_embd // 128,
|
||||
n_layer=next(i for i in itertools.count()
|
||||
if f"layers.{i}.attention.wq.weight" not in model),
|
||||
file_type=file_type,
|
||||
n_head=n_head,
|
||||
n_layer=n_layer,
|
||||
n_kv_head=None,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_vocab = config["vocab_size"]
|
||||
n_embd = config["hidden_size"]
|
||||
n_head = config["num_attention_heads"]
|
||||
n_layer = config["num_hidden_layers"]
|
||||
n_ff = config["intermediate_size"]
|
||||
n_kv_head = config.get("num_key_value_heads")
|
||||
|
||||
n_mult = find_n_mult(n_ff, n_embd)
|
||||
|
||||
return Params(
|
||||
n_vocab=n_vocab,
|
||||
n_embd=n_embd,
|
||||
n_mult=n_mult,
|
||||
n_head=n_head,
|
||||
n_layer=n_layer,
|
||||
n_kv_head=n_kv_head,
|
||||
)
|
||||
|
||||
# LLaMA v2 70B params.json
|
||||
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8,
|
||||
# "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
|
||||
@staticmethod
|
||||
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_vocab = config["vocab_size"]
|
||||
n_embd = config["dim"]
|
||||
n_head = config["n_heads"]
|
||||
n_layer = config["n_layers"]
|
||||
n_mult = config["multiple_of"]
|
||||
|
||||
if n_vocab == -1:
|
||||
n_vocab = model["tok_embeddings.weight"].shape[0]
|
||||
|
||||
return Params(
|
||||
n_vocab=n_vocab,
|
||||
n_embd=n_embd,
|
||||
n_mult=n_mult,
|
||||
n_head=n_head,
|
||||
n_layer=n_layer,
|
||||
n_kv_head=None,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load(model_plus: 'ModelPlus') -> 'Params':
|
||||
hf_config_path = model_plus.paths[0].parent / "config.json"
|
||||
orig_config_path = model_plus.paths[0].parent / "params.json"
|
||||
|
||||
if hf_config_path.exists():
|
||||
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
|
||||
elif orig_config_path.exists():
|
||||
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
|
||||
else:
|
||||
params = Params.guessed(model_plus.model)
|
||||
|
||||
print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd}'
|
||||
f'n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}')
|
||||
return params
|
||||
|
||||
|
||||
class SentencePieceVocab:
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path],
|
||||
vocabtype: Optional[str]) -> None:
|
||||
self.vocabtype = vocabtype
|
||||
if self.vocabtype == "bpe":
|
||||
self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read())
|
||||
else:
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
added_tokens = Dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
added_tokens = json.load(open(fname_added_tokens))
|
||||
else:
|
||||
added_tokens = {}
|
||||
vocab_size = self.sentencepiece_tokenizer.vocab_size()
|
||||
if self.vocabtype == "bpe":
|
||||
vocab_size: int = len(self.sentencepiece_tokenizer)
|
||||
else:
|
||||
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
invalidInputError(expected_ids == actual_ids,
|
||||
|
|
@ -235,22 +337,33 @@ class SentencePieceVocab:
|
|||
|
||||
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
||||
tokenizer = self.sentencepiece_tokenizer
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text = bytes
|
||||
if tokenizer.is_unknown(i):
|
||||
text = " \u2047 ".encode("utf-8")
|
||||
elif tokenizer.is_control(i):
|
||||
text = b""
|
||||
elif tokenizer.is_byte(i):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
invalidInputError(len(piece) == 6,
|
||||
f"Invalid token: {piece}")
|
||||
byte_value = int(piece[3:-1], 16)
|
||||
text = struct.pack("B", byte_value)
|
||||
else:
|
||||
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
yield text, score
|
||||
if self.vocabtype == "bpe":
|
||||
from transformers.models.gpt2 import tokenization_gpt2
|
||||
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||
for i, item in enumerate(tokenizer):
|
||||
text: bytes
|
||||
text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y]
|
||||
for y in item]])
|
||||
score: float = -i
|
||||
yield text, score
|
||||
else:
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text: bytes
|
||||
if tokenizer.is_unknown(i):
|
||||
text = " \u2047 ".encode("utf-8")
|
||||
elif tokenizer.is_control(i):
|
||||
text = b""
|
||||
elif tokenizer.is_byte(i):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
if len(piece) != 6:
|
||||
invalidInputError(False, f"Invalid token: {piece}")
|
||||
byte_value = int(piece[3:-1], 16)
|
||||
text = struct.pack("B", byte_value)
|
||||
else:
|
||||
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
||||
score: float = tokenizer.get_score(i)
|
||||
yield text, score
|
||||
|
||||
def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
|
||||
for text in self.added_tokens_list:
|
||||
|
|
@ -281,7 +394,9 @@ class GGMLVocab:
|
|||
Vocab = Union[SentencePieceVocab, GGMLVocab]
|
||||
|
||||
|
||||
def permute(weights: NDArray, n_head: int) -> NDArray:
|
||||
def permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
|
@ -338,7 +453,15 @@ class Tensor(metaclass=ABCMeta):
|
|||
pass
|
||||
|
||||
@abstractmethod
|
||||
def permute(self, n_head: int) -> 'Tensor':
|
||||
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'Tensor':
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def part(self, n_part: int) -> 'UnquantizedTensor':
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
|
|
@ -367,8 +490,16 @@ class UnquantizedTensor(Tensor):
|
|||
def to_ggml(self) -> 'UnquantizedTensor':
|
||||
return self
|
||||
|
||||
def permute(self, n_head: int) -> 'UnquantizedTensor':
|
||||
return UnquantizedTensor(permute(self.ndarray, n_head))
|
||||
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
|
||||
r = self.ndarray.shape[0] // 3
|
||||
return UnquantizedTensor(permute(self.ndarray[r * n_part: r * n_part + r, ...], n_head))
|
||||
|
||||
def part(self, n_part: int) -> 'UnquantizedTensor':
|
||||
r = self.ndarray.shape[0] // 3
|
||||
return UnquantizedTensor(self.ndarray[r * n_part: r * n_part + r, ...])
|
||||
|
||||
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'UnquantizedTensor':
|
||||
return UnquantizedTensor(permute(self.ndarray, n_head, n_kv_head))
|
||||
|
||||
|
||||
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None,
|
||||
|
|
@ -417,26 +548,36 @@ class GGMLQuantizedTensor(Tensor):
|
|||
def to_ggml(self) -> 'GGMLQuantizedTensor':
|
||||
return self
|
||||
|
||||
def permute(self, n_head: int) -> 'GGMLQuantizedTensor':
|
||||
return GGMLQuantizedTensor(permute(self.ndarray, n_head), self.shape, self.data_type)
|
||||
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'GGMLQuantizedTensor':
|
||||
return GGMLQuantizedTensor(permute(self.ndarray, n_head, n_kv_head),
|
||||
self.shape, self.data_type)
|
||||
|
||||
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
|
||||
r = self.ndarray.shape[0] // 3
|
||||
return UnquantizedTensor(permute(self.ndarray[r * n_part: r * n_part + r, ...], n_head))
|
||||
|
||||
def part(self, n_part: int) -> 'UnquantizedTensor':
|
||||
r = self.ndarray.shape[0] // 3
|
||||
return UnquantizedTensor(self.ndarray[r * n_part: r * n_part + r, ...])
|
||||
|
||||
|
||||
GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor]
|
||||
|
||||
|
||||
class DeferredPermutedTensor(Tensor):
|
||||
def __init__(self, base: Tensor, n_head: int) -> None:
|
||||
def __init__(self, base: Tensor, n_head: int, n_kv_head: Optional[int] = None) -> None:
|
||||
self.base = base
|
||||
self.n_head = n_head
|
||||
self.n_kv_head = n_kv_head
|
||||
self.data_type = self.base.data_type
|
||||
|
||||
def astype(self, data_type: DataType) -> Tensor:
|
||||
return self.base.astype(data_type).permute(self.n_head)
|
||||
return self.base.astype(data_type).permute(self.n_head, self.n_kv_head)
|
||||
|
||||
def to_ggml(self) -> GGMLCompatibleTensor:
|
||||
return self.base.to_ggml().permute(self.n_head)
|
||||
return self.base.to_ggml().permute(self.n_head, self.n_kv_head)
|
||||
|
||||
def permute(self, n_head: int) -> Tensor:
|
||||
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
|
||||
invalidInputError(False, "Shouldn't permute twice.")
|
||||
|
||||
|
||||
|
|
@ -540,8 +681,8 @@ class GPTQForLLaMaQuantizedTensor(Tensor):
|
|||
have_g_idx=False)
|
||||
return ret
|
||||
|
||||
def permute(self, n_head: int) -> Tensor:
|
||||
return DeferredPermutedTensor(self, n_head)
|
||||
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
|
||||
return DeferredPermutedTensor(self, n_head, n_kv_head)
|
||||
|
||||
def to_ggml(self) -> GGMLQuantizedTensor:
|
||||
# The output format looks like this:
|
||||
|
|
@ -598,8 +739,11 @@ class LazyTensor:
|
|||
"Can't turn an unquantized tensor into"
|
||||
f" a quantized type ({data_type}).")
|
||||
if self.data_type.have_g_idx:
|
||||
sys.stderr.write("Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx)"
|
||||
", which is not yet natively supported by GGML.")
|
||||
sys.stderr.write(
|
||||
"Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), "
|
||||
"which is not yet natively supported by GGML. For now "
|
||||
"you can still convert this model by passing `--outtype f16` to dequantize, "
|
||||
"but that will result in a much larger output file for no quality benefit.\n")
|
||||
sys.exit(1)
|
||||
invalidInputError(not data_type.have_g_idx and self.data_type.have_addends and
|
||||
data_type.have_addends,
|
||||
|
|
@ -675,28 +819,57 @@ def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
|
|||
return ModelPlus(model, paths, format, vocab)
|
||||
|
||||
|
||||
def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor:
|
||||
def permute_lazy(lazy_tensor: LazyTensor, n_head: int,
|
||||
n_kv_head: Optional[int] = None) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
return lazy_tensor.load().permute(n_head)
|
||||
return lazy_tensor.load().permute(n_head, n_kv_head)
|
||||
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type,
|
||||
f'permute({n_head}, {n_kv_head}) ' + lazy_tensor.description)
|
||||
|
||||
|
||||
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
return lazy_tensor.load().permute_part(n_part, n_head)
|
||||
s = lazy_tensor.shape.copy()
|
||||
s[0] = s[0] // 3
|
||||
return LazyTensor(load, s, lazy_tensor.data_type,
|
||||
f'permute({n_head}) ' + lazy_tensor.description)
|
||||
|
||||
|
||||
def convert_transformers_to_orig(model: LazyModel) -> LazyModel:
|
||||
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
return lazy_tensor.load().part(n_part)
|
||||
s = lazy_tensor.shape.copy()
|
||||
s[0] = s[0] // 3
|
||||
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
|
||||
|
||||
|
||||
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
|
||||
out = {}
|
||||
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
|
||||
out["norm.weight"] = model["model.norm.weight"]
|
||||
out["output.weight"] = model["lm_head.weight"]
|
||||
|
||||
n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128
|
||||
for i in itertools.count():
|
||||
if f"model.layers.{i}.self_attn.q_proj.weight" not in model:
|
||||
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
||||
out[f"layers.{i}.attention.wq.weight"] = \
|
||||
permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
|
||||
out[f"layers.{i}.attention.wk.weight"] = \
|
||||
permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"],
|
||||
params.n_head, params.n_kv_head)
|
||||
out[f"layers.{i}.attention.wv.weight"] = \
|
||||
model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
||||
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
||||
out[f"layers.{i}.attention.wq.weight"] = \
|
||||
permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"],
|
||||
0, params.n_head)
|
||||
out[f"layers.{i}.attention.wk.weight"] = \
|
||||
permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"],
|
||||
1, params.n_head)
|
||||
out[f"layers.{i}.attention.wv.weight"] = \
|
||||
part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
|
||||
else:
|
||||
break
|
||||
out[f"layers.{i}.attention.wq.weight"] = \
|
||||
permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head)
|
||||
out[f"layers.{i}.attention.wk.weight"] = \
|
||||
permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head)
|
||||
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
||||
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
|
||||
|
||||
out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"]
|
||||
|
|
@ -792,7 +965,9 @@ class LazyUnpickler(pickle.Unpickler):
|
|||
f' path={self.zip_file.filename}'
|
||||
return LazyStorage(load=load, kind=pid[1], description=description)
|
||||
|
||||
# @staticmethod
|
||||
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
|
||||
# pyright: ignore[reportSelfClsParameterName]
|
||||
requires_grad: Any, backward_hooks: Any,
|
||||
metadata: Any = None) -> LazyTensor:
|
||||
invalidInputError(isinstance(storage, LazyStorage), "Fail to rebuild `LazyTensor`.")
|
||||
|
|
@ -837,6 +1012,7 @@ def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
|
|||
|
||||
|
||||
SAFETENSORS_DATA_TYPES = {
|
||||
'BF16': DT_BF16,
|
||||
'F16': DT_F16,
|
||||
'F32': DT_F32,
|
||||
'I32': DT_I32,
|
||||
|
|
@ -1020,7 +1196,7 @@ class OutputFile:
|
|||
def __init__(self, fname_out: Path) -> None:
|
||||
self.fout = open(fname_out, "wb")
|
||||
|
||||
def write_file_header(self, params: Params) -> None:
|
||||
def write_file_header(self, params: Params, file_type: GGMLFileType) -> None:
|
||||
self.fout.write(b"ggjt"[::-1]) # magic
|
||||
values = [
|
||||
1, # file version
|
||||
|
|
@ -1030,7 +1206,7 @@ class OutputFile:
|
|||
params.n_head,
|
||||
params.n_layer,
|
||||
params.n_embd // params.n_head, # rot (obsolete)
|
||||
params.file_type.value,
|
||||
file_type.value,
|
||||
]
|
||||
self.fout.write(struct.pack("i" * len(values), *values))
|
||||
|
||||
|
|
@ -1050,18 +1226,18 @@ class OutputFile:
|
|||
@staticmethod
|
||||
def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
|
||||
of = OutputFile(fname_out)
|
||||
params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0,
|
||||
n_head=1, n_layer=0, file_type=GGMLFileType.AllF32)
|
||||
params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, n_head=1, n_layer=0)
|
||||
of = OutputFile(fname_out)
|
||||
of.write_file_header(params)
|
||||
of.write_file_header(params, file_type=GGMLFileType.AllF32)
|
||||
of.write_vocab(vocab)
|
||||
of.fout.close()
|
||||
|
||||
@staticmethod
|
||||
def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None:
|
||||
def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel,
|
||||
vocab: Vocab) -> None:
|
||||
check_vocab_size(params, vocab)
|
||||
of = OutputFile(fname_out)
|
||||
of.write_file_header(params)
|
||||
of.write_file_header(params, file_type)
|
||||
print("Writing vocab...")
|
||||
of.write_vocab(vocab)
|
||||
|
||||
|
|
@ -1099,11 +1275,11 @@ def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFi
|
|||
invalidInputError(False, f"Unexpected combination of types: {name_to_type}.")
|
||||
|
||||
|
||||
def do_necessary_conversions(model: LazyModel) -> LazyModel:
|
||||
def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel:
|
||||
model = handle_quantization(model)
|
||||
|
||||
if "lm_head.weight" in model:
|
||||
model = convert_transformers_to_orig(model)
|
||||
model = convert_transformers_to_orig(model, params)
|
||||
model = filter_and_sort_tensors(model)
|
||||
|
||||
return model
|
||||
|
|
@ -1157,7 +1333,7 @@ def load_some_model(path: Path) -> ModelPlus:
|
|||
'''Load a model of any supported format.'''
|
||||
# Be extra-friendly and accept either a file or a directory:
|
||||
if path.is_dir():
|
||||
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt"]
|
||||
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
|
||||
files = [file for glob in globs for file in path.glob(glob)]
|
||||
if not files:
|
||||
# Try GGML too, but with lower priority, since if both a non-GGML
|
||||
|
|
@ -1183,35 +1359,46 @@ def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
|
|||
return {name: model[name] for name in TENSORS_LIST if name in model}
|
||||
|
||||
|
||||
def load_vocab(path: Path) -> SentencePieceVocab:
|
||||
def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab:
|
||||
# Be extra-friendly and accept either a file or a directory. Also, if it's
|
||||
# a directory, it might be the model directory, and tokenizer.model might
|
||||
# be in the parent of that.
|
||||
print(f"vocabtype: {vocabtype}")
|
||||
if path.is_dir():
|
||||
path2 = path / "tokenizer.model"
|
||||
vocab_file = "tokenizer.model"
|
||||
if vocabtype == 'bpe':
|
||||
vocab_file = "vocab.json"
|
||||
path2 = path / vocab_file
|
||||
# Use `.parent` instead of /.. to handle the symlink case better.
|
||||
path3 = path.parent / "tokenizer.model"
|
||||
path3 = path.parent / vocab_file
|
||||
if path2.exists():
|
||||
path = path2
|
||||
elif path3.exists():
|
||||
path = path3
|
||||
else:
|
||||
invalidInputError(False,
|
||||
f"Could not find tokenizer.model in {path} or its parent.")
|
||||
f"Could not find tokenizer.model in {path} or its parent; "
|
||||
"if it's in another directory, pass the directory as --vocab-dir")
|
||||
added_tokens_path = path.parent / "added_tokens.json"
|
||||
print(f"Loading vocab file {path}")
|
||||
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
|
||||
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None,
|
||||
vocabtype)
|
||||
|
||||
|
||||
def default_outfile(output_dir: Path, params: Params) -> Path:
|
||||
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
|
||||
namestr = {
|
||||
GGMLFileType.AllF32: "f32",
|
||||
GGMLFileType.MostlyF16: "f16",
|
||||
GGMLFileType.MostlyQ4_0: "q4_0",
|
||||
GGMLFileType.MostlyQ4_1: "q4_1",
|
||||
GGMLFileType.PerLayerIsQ4_1: "q4_1",
|
||||
}[params.file_type]
|
||||
ret = output_dir / f"ggml-model-{namestr}.bin"
|
||||
}[file_type]
|
||||
ret = model_paths[0] / f"ggml-model-{namestr}.bin"
|
||||
if ret in model_paths:
|
||||
sys.stderr.write(
|
||||
f"Error: Default output path ({ret}) would overwrite the input. "
|
||||
"Please explicitly specify a path using --outfile.\n")
|
||||
sys.exit(1)
|
||||
return ret
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue