follow up on experimental support of fused decoder layer for llama2 (#11785)
* clean up and support transpose value cache * refine * fix style * fix style
This commit is contained in:
parent
cb79dcda93
commit
51bcac1229
3 changed files with 301 additions and 327 deletions
|
|
@ -15,7 +15,7 @@
|
|||
#
|
||||
|
||||
import os
|
||||
os.environ["OMP_NUM_THREADS"] = "4"
|
||||
os.environ["OMP_NUM_THREADS"] = "8"
|
||||
os.environ["IPEX_LLM_LAST_LM_HEAD"] = "1"
|
||||
import torch
|
||||
import time
|
||||
|
|
@ -40,6 +40,7 @@ from functools import partial
|
|||
import torch.nn.functional as F
|
||||
import torch.nn.parallel
|
||||
import torch.distributed as dist
|
||||
from filelock import FileLock
|
||||
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
|
@ -116,164 +117,12 @@ def run_model(
|
|||
return results
|
||||
|
||||
|
||||
class LowBitLlamaDecoderlayer(NNFactory):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_shape: Sequence[int],
|
||||
attenion_mask_shape=None,
|
||||
position_id_shape=None,
|
||||
past_key_shape=None,
|
||||
past_value_shape=None,
|
||||
input_layernorm_shape=None,
|
||||
post_layernorm_shape=None,
|
||||
*,
|
||||
num_heads: int,
|
||||
num_key_value_heads: int,
|
||||
cached_cos,
|
||||
cached_sin,
|
||||
mode: str = "prefill",
|
||||
dtype: np.dtype = np.int8,
|
||||
max_seq_len: int = 128,
|
||||
profile: bool = False,
|
||||
device: str = "NPU",
|
||||
rms_norm_eps,
|
||||
intermediate_size,
|
||||
**additional_args
|
||||
):
|
||||
super().__init__(profile, device)
|
||||
self.max_seq_len = max_seq_len
|
||||
self.intermediate_size = intermediate_size
|
||||
eps = self.constant(rms_norm_eps)
|
||||
|
||||
self.batch_size, self.seq_len, self.hidden_size = hidden_shape
|
||||
|
||||
if mode == "decode":
|
||||
invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
|
||||
self.num_heads = num_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
|
||||
# define input, the order self.parameter matters
|
||||
input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
|
||||
|
||||
# Self Attention
|
||||
if mode == "decode":
|
||||
attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
|
||||
else:
|
||||
attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
|
||||
|
||||
position_ids = self.parameter((self.batch_size, self.seq_len))
|
||||
|
||||
input_layernorm_weight = self.parameter((1, self.hidden_size,))
|
||||
post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
|
||||
|
||||
if mode == "decode":
|
||||
past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
|
||||
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
|
||||
|
||||
residual = input
|
||||
|
||||
input_2d = self.reshape(input, (self.batch_size * self.seq_len, self.hidden_size))
|
||||
|
||||
# input_layernorm forward
|
||||
input_2d = self.convert_to_fp32(input_2d)
|
||||
variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
|
||||
input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
|
||||
input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
|
||||
input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
|
||||
input_2d = self.convert_to_fp16(input_2d)
|
||||
|
||||
query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
|
||||
key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
|
||||
value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
|
||||
|
||||
cos = self.constant(cached_cos)
|
||||
cos = self.unsqueeze(cos, axis=0)
|
||||
|
||||
sin = self.constant(cached_sin)
|
||||
sin = self.unsqueeze(sin, axis=0)
|
||||
|
||||
query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
|
||||
key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
|
||||
value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
|
||||
|
||||
query_states = self.transpose(query_states, [0, 2, 1, 3])
|
||||
key_states = self.transpose(key_states, [0, 2, 1, 3])
|
||||
value_states = self.transpose(value_states, [0, 2, 1, 3])
|
||||
|
||||
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
new_key_states = key_states
|
||||
new_value_states = value_states
|
||||
|
||||
invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
|
||||
|
||||
if mode == "decode":
|
||||
key_states = self.concat(past_key, key_states, axis=-2)
|
||||
value_states = self.concat(past_value, value_states, axis=-2)
|
||||
|
||||
attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
|
||||
attn_weight = self.eltwise_add(attn_weight, attention_mask)
|
||||
attn_weight = self.convert_to_fp32(attn_weight)
|
||||
attn_weight = self.softmax(attn_weight, -1)
|
||||
attn_weight = self.convert_to_fp16(attn_weight)
|
||||
attn_output = self.matmul(attn_weight, value_states, False, False)
|
||||
|
||||
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
|
||||
attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
|
||||
|
||||
attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=dtype)
|
||||
|
||||
hidden_states = self.eltwise_add(residual, attn_output)
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.convert_to_fp32(hidden_states)
|
||||
variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
|
||||
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
|
||||
post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
|
||||
hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
|
||||
hidden_states = self.convert_to_fp16(hidden_states)
|
||||
|
||||
# mlp
|
||||
mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
|
||||
bias=False, wt_dtype=dtype)
|
||||
mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
|
||||
bias=False, wt_dtype=dtype) # type: ignore[attr-defined]
|
||||
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
|
||||
|
||||
hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=dtype)
|
||||
|
||||
hidden_states = self.eltwise_add(residual, hidden_states)
|
||||
hidden_states = self.convert_to_fp16(hidden_states)
|
||||
|
||||
# hacking to add key, value to outputs
|
||||
new_key_states = self.convert_to_fp16(new_key_states)
|
||||
new_value_states = self.convert_to_fp16(new_value_states)
|
||||
|
||||
self.compile()
|
||||
|
||||
def rotate_half(self, x):
|
||||
x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
|
||||
x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
|
||||
return self.concat(self.negative(x2), x1, axis=-1)
|
||||
|
||||
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
|
||||
position_ids = self.squeeze(position_ids)
|
||||
cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
|
||||
sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
|
||||
cos = self.unsqueeze(cos, [1])
|
||||
sin = self.unsqueeze(sin, [1])
|
||||
|
||||
q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
|
||||
k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
|
||||
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
class LowBitLlamaMultiDecoderlayer(NNFactory):
|
||||
def __init__(
|
||||
self,
|
||||
# batch_size: int,
|
||||
# seq_len: int,
|
||||
# hidden_size: int,
|
||||
hidden_shape: Sequence[int],
|
||||
*shapes,
|
||||
num_heads: int,
|
||||
|
|
@ -281,16 +130,16 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
num_layers: int,
|
||||
cached_cos,
|
||||
cached_sin,
|
||||
input_layernorm_weights,
|
||||
post_attn_layernorm_weights,
|
||||
input_layernorm_weights=None,
|
||||
post_attn_layernorm_weights=None,
|
||||
mode: str = "prefill",
|
||||
dtype: np.dtype = np.int8,
|
||||
max_seq_len: int = 128,
|
||||
max_seq_len: int = 1024,
|
||||
transpose_value: bool = False,
|
||||
profile: bool = False,
|
||||
device: str = "NPU",
|
||||
rms_norm_eps,
|
||||
intermediate_size,
|
||||
**additional_args
|
||||
):
|
||||
super().__init__(profile, device)
|
||||
self.max_seq_len = max_seq_len
|
||||
|
|
@ -301,6 +150,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
self.batch_size, self.seq_len, self.hidden_size = hidden_shape
|
||||
self.mode = mode
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.transpose_value = transpose_value
|
||||
|
||||
cos = self.constant(self.cached_cos)
|
||||
self.cos = self.unsqueeze(cos, axis=0)
|
||||
|
|
@ -309,11 +159,16 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
self.sin = self.unsqueeze(sin, axis=0)
|
||||
|
||||
if mode == "decode":
|
||||
invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
|
||||
assert self.seq_len == 1, "seq_len must be 1 for decode mode"
|
||||
self.kv_seq_len = self.max_seq_len + 1
|
||||
else:
|
||||
self.kv_seq_len = self.seq_len
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||||
|
||||
# define input, the order self.parameter matters
|
||||
input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
|
||||
|
|
@ -323,22 +178,35 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
|
||||
else:
|
||||
attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
|
||||
|
||||
|
||||
|
||||
position_ids = self.parameter((self.batch_size, self.seq_len))
|
||||
past_keys = []
|
||||
past_values = []
|
||||
if mode == "decode":
|
||||
for i in range(num_layers):
|
||||
past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
|
||||
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
|
||||
if transpose_value:
|
||||
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len))
|
||||
else:
|
||||
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
|
||||
past_keys.append(past_key)
|
||||
past_values.append(past_value)
|
||||
else:
|
||||
past_key = None
|
||||
past_value = None
|
||||
past_keys = [None] * num_layers
|
||||
past_values = [None] * num_layers
|
||||
|
||||
if input_layernorm_weights is None:
|
||||
assert post_attn_layernorm_weights is None
|
||||
input_layernorm_weights = []
|
||||
post_attn_layernorm_weights = []
|
||||
for i in range(num_layers):
|
||||
input_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
|
||||
post_attn_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
|
||||
else:
|
||||
input_layernorm_weights = [self.constant(w) for w in input_layernorm_weights]
|
||||
post_attn_layernorm_weights = [self.constant(w) for w in post_attn_layernorm_weights]
|
||||
|
||||
# input_layernorm_weight = self.parameter((1, self.hidden_size,))
|
||||
# post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
|
||||
hidden_states = input
|
||||
|
||||
curr_key_values = []
|
||||
|
|
@ -352,6 +220,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
past_value=past_values[i],)
|
||||
curr_key_values.append((new_key_states, new_value_states))
|
||||
|
||||
|
||||
# define outputs
|
||||
hidden_states = self.convert_to_fp16(hidden_states)
|
||||
|
||||
|
|
@ -359,7 +228,22 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
new_key_states = self.convert_to_fp16(curr_key_values[i][0])
|
||||
new_value_states = self.convert_to_fp16(curr_key_values[i][1])
|
||||
|
||||
self.compile()
|
||||
with FileLock("decoder_compile.lock"):
|
||||
print("start compiling")
|
||||
self.compile()
|
||||
|
||||
def repeat_kv(self, hidden_states, n_rep, transpose=False):
|
||||
if n_rep == 1:
|
||||
return hidden_states
|
||||
if not transpose:
|
||||
hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.kv_seq_len, self.head_dim])
|
||||
hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.kv_seq_len, self.head_dim])
|
||||
hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.kv_seq_len, self.head_dim])
|
||||
else:
|
||||
hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.head_dim, self.kv_seq_len])
|
||||
hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.head_dim, self.kv_seq_len])
|
||||
hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.head_dim, self.kv_seq_len])
|
||||
return hidden_states
|
||||
|
||||
def build_decoder(self, hidden_states, attention_mask, position_ids,
|
||||
input_layernorm_weight, post_attention_layernorm_weight,
|
||||
|
|
@ -372,10 +256,11 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
|
||||
# input layernorm
|
||||
input_2d = self.convert_to_fp32(input_2d)
|
||||
# variance = self.reduce_mean(self.eltwise_mul(input_2d, input_2d), -1, keep_dims=True)
|
||||
variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
|
||||
eps = self.constant(self.rms_norm_eps)
|
||||
input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
|
||||
input_layernorm_weight = self.constant(input_layernorm_weight)
|
||||
# input_layernorm_weight = self.constant(input_layernorm_weight)
|
||||
input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
|
||||
input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
|
||||
input_2d = self.convert_to_fp16(input_2d)
|
||||
|
|
@ -384,6 +269,12 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
|
||||
key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
|
||||
value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
|
||||
|
||||
# cos = self.constant(self.cached_cos)
|
||||
# cos = self.unsqueeze(cos, axis=0)
|
||||
|
||||
# sin = self.constant(self.cached_sin)
|
||||
# sin = self.unsqueeze(sin, axis=0)
|
||||
|
||||
query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
|
||||
key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
|
||||
|
|
@ -391,27 +282,35 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
|
||||
query_states = self.transpose(query_states, [0, 2, 1, 3])
|
||||
key_states = self.transpose(key_states, [0, 2, 1, 3])
|
||||
value_states = self.transpose(value_states, [0, 2, 1, 3])
|
||||
if self.transpose_value:
|
||||
value_states = self.transpose(value_states, [0, 2, 3, 1])
|
||||
else:
|
||||
value_states = self.transpose(value_states, [0, 2, 1, 3])
|
||||
|
||||
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, self.cos, self.sin, position_ids)
|
||||
new_key_states = key_states
|
||||
new_value_states = value_states
|
||||
|
||||
# repeat_kv cannot be implemented because Broadcast op is needed
|
||||
# key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
# value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
|
||||
|
||||
|
||||
if self.mode == "decode":
|
||||
key_states = self.concat(past_key, key_states, axis=-2)
|
||||
value_states = self.concat(past_value, value_states, axis=-2)
|
||||
if self.transpose_value:
|
||||
value_states = self.concat(past_value, value_states, axis=-1)
|
||||
else:
|
||||
value_states = self.concat(past_value, value_states, axis=-2)
|
||||
|
||||
# repeat_kv cannot be implemented because Broadcast op is needed
|
||||
key_states = self.repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = self.repeat_kv(value_states, self.num_key_value_groups, self.transpose_value)
|
||||
|
||||
attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
|
||||
attn_weight = self.eltwise_add(attn_weight, attention_mask)
|
||||
attn_weight = self.convert_to_fp32(attn_weight)
|
||||
attn_weight = self.softmax(attn_weight, -1)
|
||||
attn_weight = self.convert_to_fp16(attn_weight)
|
||||
attn_output = self.matmul(attn_weight, value_states, False, False)
|
||||
attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
|
||||
|
||||
|
||||
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
|
||||
attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
|
||||
|
|
@ -422,10 +321,12 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
|
|||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
# post_attention_layernorm forward
|
||||
|
||||
hidden_states = self.convert_to_fp32(hidden_states)
|
||||
variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
|
||||
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
|
||||
post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
|
||||
# post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
|
||||
post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
|
||||
hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
|
||||
hidden_states = self.convert_to_fp16(hidden_states)
|
||||
|
|
@ -472,12 +373,17 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
layer_indexes : List[int],
|
||||
cached_cos,
|
||||
cached_sin,
|
||||
# rotary_emb,
|
||||
# batch_size: int,
|
||||
# seq_len: int,
|
||||
# hidden_size: int,
|
||||
num_heads: int,
|
||||
head_dim: int,
|
||||
num_key_value_heads: int,
|
||||
rms_norm_eps,
|
||||
intermediate_size,
|
||||
max_seq_len: int = 128,
|
||||
max_seq_len: int = 1024,
|
||||
transpose_value: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
|
@ -491,38 +397,74 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
self.op_id = str(uuid.uuid4())
|
||||
# self.layer_idx = layer_idx
|
||||
self.max_seq_len = max_seq_len
|
||||
self.transpose_value = transpose_value
|
||||
# self.rotary_emb = rotary_emb
|
||||
if isinstance(parameters[0], tuple): # weight, scale from QuantizedLinear
|
||||
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
|
||||
assert np_dtype == np.uint8
|
||||
assert parameters[0][1].dtype == torch.float16, parameters[0]
|
||||
else: # FP16 Linear
|
||||
invalidInputError(False, "Please use int4 optimization")
|
||||
assert False, "should not be here"
|
||||
np_dtype = np.float16
|
||||
|
||||
self.layer_indexes = layer_indexes
|
||||
self.num_layers_1 = len(self.layer_indexes) // 2
|
||||
self.num_layers_0 = len(self.layer_indexes) - self.num_layers_1
|
||||
|
||||
assert self.num_layers_1 + self.num_layers_0 == len(input_laynorm_weights)
|
||||
assert self.num_layers_1 + self.num_layers_0 == len(post_attn_layernorm_weights)
|
||||
|
||||
print("create dedcoder layer")
|
||||
self.backend_cls_decode = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
|
||||
input_layernorm_weights=input_laynorm_weights,
|
||||
post_attn_layernorm_weights=post_attn_layernorm_weights,
|
||||
self.backend_cls_decode_0 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
|
||||
input_layernorm_weights=input_laynorm_weights[:self.num_layers_0],
|
||||
post_attn_layernorm_weights=post_attn_layernorm_weights[:self.num_layers_0],
|
||||
cached_cos=cached_cos,
|
||||
cached_sin=cached_sin,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
num_layers=len(layer_indexes),
|
||||
num_layers=self.num_layers_0,
|
||||
max_seq_len=max_seq_len,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
mode="decode",
|
||||
transpose_value=self.transpose_value,
|
||||
dtype=np_dtype)
|
||||
self.backend_cls_decode_1 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
|
||||
input_layernorm_weights=input_laynorm_weights[self.num_layers_0:],
|
||||
post_attn_layernorm_weights=post_attn_layernorm_weights[self.num_layers_0:],
|
||||
cached_cos=cached_cos,
|
||||
cached_sin=cached_sin,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
num_layers=self.num_layers_1,
|
||||
max_seq_len=max_seq_len,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
mode="decode",
|
||||
transpose_value=self.transpose_value,
|
||||
dtype=np_dtype)
|
||||
print("created dedcoder layer")
|
||||
|
||||
assert (self.num_layers_0 + self.num_layers_1) * 7 == len(op_parameters)
|
||||
|
||||
self.backend_cls_decode.setWeights(3+len(layer_indexes)*2, self.op_id, *op_parameters)
|
||||
print("weight setted")
|
||||
backend_lib.run(self.backend_cls_decode._mm,)
|
||||
self.backend_cls_decode_0.setWeights(3+self.num_layers_0*2, self.op_id, *op_parameters[:self.num_layers_0*7])
|
||||
backend_lib.run(self.backend_cls_decode_0._mm)
|
||||
|
||||
print("first inference done")
|
||||
self.kv_cache_c_parameter_handel = None
|
||||
|
||||
self.backend_cls_decode_1.setWeights(3+self.num_layers_1*2, self.op_id, *op_parameters[self.num_layers_0*7:])
|
||||
|
||||
|
||||
print("weight setted")
|
||||
backend_lib.run(self.backend_cls_decode_1._mm)
|
||||
|
||||
print("2nd inference done")
|
||||
|
||||
self.kv_cache_c_parameter_handel = (None, None)
|
||||
self.kv_cache_parameters = None
|
||||
self.kv_cache_prefetched = False
|
||||
|
||||
|
||||
def forward(self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
|
|
@ -541,8 +483,6 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
torch.Tensor: result
|
||||
"""
|
||||
seq_len = hidden_states.shape[1]
|
||||
backend_cls = self.backend_cls_decode
|
||||
|
||||
pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
|
||||
|
||||
pad_mask = (0, pad_len)
|
||||
|
|
@ -550,8 +490,9 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
value=torch.finfo(torch.float16).min)
|
||||
padded_attention_mask[:,:,:,-1] = 0.0
|
||||
inputs = (hidden_states.to(torch.float16),
|
||||
padded_attention_mask,
|
||||
position_ids,)
|
||||
padded_attention_mask,
|
||||
position_ids,
|
||||
)
|
||||
|
||||
if self.kv_cache_parameters is None:
|
||||
self.kv_cache_parameters = []
|
||||
|
|
@ -562,56 +503,76 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
|
||||
current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
|
||||
if cached_prt != current_ptr:
|
||||
# print("kv cache changed")
|
||||
self.kv_cache_parameters = []
|
||||
self.kv_cache_c_parameter_handel = None
|
||||
self.kv_cache_c_parameter_handel = (None, None)
|
||||
self.kv_cache_prefetched = False
|
||||
|
||||
if len(self.kv_cache_parameters) == 0:
|
||||
for idx in self.layer_indexes:
|
||||
past_key = past_key_value.key_cache[idx]
|
||||
past_value = past_key_value.value_cache[idx]
|
||||
|
||||
assert past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
|
||||
|
||||
new_size = (past_key.size(0),
|
||||
past_key.size(1),
|
||||
self.max_seq_len,
|
||||
past_key.size(3))
|
||||
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
|
||||
assert past_key.is_contiguous()
|
||||
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
|
||||
if self.transpose_value:
|
||||
past_value = past_value.transpose(-1, -2)
|
||||
assert past_value.is_contiguous()
|
||||
|
||||
self.kv_cache_parameters.append(past_key)
|
||||
self.kv_cache_parameters.append(past_value)
|
||||
self.kv_cache_c_parameter_handel = self.backend_cls_decode.create_parameters([p.numpy() for p in self.kv_cache_parameters])
|
||||
handle_0 = self.backend_cls_decode_0.create_parameters([p.numpy() for p in self.kv_cache_parameters[:self.num_layers_0*2]])
|
||||
handle_1 = self.backend_cls_decode_1.create_parameters([p.numpy() for p in self.kv_cache_parameters[self.num_layers_0*2:]])
|
||||
assert len(self.kv_cache_parameters) == (self.num_layers_0 + self.num_layers_1) * 2
|
||||
self.kv_cache_c_parameter_handel = (handle_0, handle_1)
|
||||
|
||||
x_np = [elem.to(torch.float16).numpy() for elem in inputs]
|
||||
|
||||
key_value_states = []
|
||||
|
||||
with record_function(f"npu_factory"):
|
||||
if not self.kv_cache_prefetched:
|
||||
self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
|
||||
self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
|
||||
self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
|
||||
|
||||
for idx, elem in enumerate(x_np):
|
||||
self.backend_cls_decode.set_input_tensor(elem, idx)
|
||||
models_ptr = (ctypes.POINTER(ctypes.c_char) * 2)(self.backend_cls_decode_0._mm, self.backend_cls_decode_1._mm)
|
||||
inputs_ptr = (ctypes.c_void_p * 3)(x_np[0].ctypes.data_as(ctypes.c_void_p), x_np[1].ctypes.data_as(ctypes.c_void_p), x_np[2].ctypes.data_as(ctypes.c_void_p))
|
||||
|
||||
backend_lib.run(self.backend_cls_decode._mm,)
|
||||
ret = self.backend_cls_decode.out
|
||||
results = [adapt_output_tensor(r, r.shape, torch.float16) for r in ret]
|
||||
backend_lib.run_decoders(models_ptr, inputs_ptr, 2, 3)
|
||||
|
||||
hidden_states = results[0]
|
||||
key_value_states = results[1:]
|
||||
for i in range(1, len(self.backend_cls_decode_0.torch_out)):
|
||||
key_value_states.append(self.backend_cls_decode_0.torch_out[i])
|
||||
|
||||
for i in range(1, len(self.backend_cls_decode_1.torch_out)):
|
||||
key_value_states.append(self.backend_cls_decode_1.torch_out[i])
|
||||
|
||||
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
|
||||
hidden_states = self.backend_cls_decode_1.torch_out[0]
|
||||
|
||||
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
|
||||
for i in range(len(self.layer_indexes)):
|
||||
key_states, value_states = past_key_value.update(key_value_states[2*i],
|
||||
key_value_states[2*i+1],
|
||||
self.layer_indexes[i], cache_kwargs)
|
||||
|
||||
self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
|
||||
self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
|
||||
self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
|
||||
self.kv_cache_prefetched = True
|
||||
|
||||
outputs = (hidden_states,)
|
||||
outputs += (past_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
||||
"""LLAMA MLP operation NPU backend."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
parameters: List[torch.Tensor],
|
||||
|
|
@ -625,41 +586,36 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
|||
rms_norm_eps,
|
||||
intermediate_size,
|
||||
max_seq_len: int = 128,
|
||||
transpose_value: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.op_parameters = parameters
|
||||
self.op_id = str(uuid.uuid4())
|
||||
self.layer_idx = layer_idx
|
||||
self.max_seq_len = max_seq_len
|
||||
self.transpose_value = transpose_value
|
||||
# self.rotary_emb = rotary_emb
|
||||
if isinstance(parameters[0], tuple): # weight, scale from QuantizedLinear
|
||||
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
|
||||
else: # FP16 Linear
|
||||
np_dtype = np.float16
|
||||
|
||||
self.backend_cls_prefill = partial(LowBitLlamaDecoderlayer,
|
||||
cached_cos=cached_cos,
|
||||
cached_sin=cached_sin,
|
||||
self.backend_cls_prefill = partial(LowBitLlamaMultiDecoderlayer,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
num_layers=1,
|
||||
cached_cos=cached_cos,
|
||||
cached_sin=cached_sin,
|
||||
input_layernorm_weights=None,
|
||||
post_attn_layernorm_weights=None,
|
||||
max_seq_len=max_seq_len,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
mode="prefill",
|
||||
transpose_value=self.transpose_value,
|
||||
dtype=np_dtype)
|
||||
self.backend_cls_decode = partial(LowBitLlamaDecoderlayer,
|
||||
cached_cos=cached_cos,
|
||||
cached_sin=cached_sin,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
max_seq_len=max_seq_len,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
mode="decode",
|
||||
dtype=np_dtype)
|
||||
self.layer_norm_0 = layer_norm_0
|
||||
self.layer_norm_1 = layer_norm_1
|
||||
|
||||
|
||||
def forward(self,
|
||||
hidden_states: torch.Tensor,
|
||||
|
|
@ -670,43 +626,28 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
|||
use_cache: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,) -> torch.Tensor:
|
||||
"""Torch module forward method.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor
|
||||
|
||||
Returns:
|
||||
torch.Tensor: result
|
||||
"""
|
||||
assert not output_attentions
|
||||
# assert cache_position is None
|
||||
# assert use_cache
|
||||
|
||||
seq_len = hidden_states.shape[1]
|
||||
# cos, sin = self.rotary_emb(hidden_states, position_ids)
|
||||
if seq_len == 1:
|
||||
backend_cls = self.backend_cls_decode
|
||||
past_key = past_key_value.key_cache[self.layer_idx]
|
||||
past_value = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
new_size = (past_key.size(0),
|
||||
past_key.size(1),
|
||||
self.max_seq_len,
|
||||
past_key.size(3))
|
||||
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
|
||||
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
|
||||
|
||||
pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
|
||||
|
||||
pad_mask = (0, pad_len)
|
||||
padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
|
||||
value=torch.finfo(torch.float16).min)
|
||||
padded_attention_mask[:,:,:,-1] = 0.0
|
||||
inputs = (hidden_states.to(torch.float16),
|
||||
padded_attention_mask,
|
||||
position_ids,)
|
||||
|
||||
inputs += (self.layer_norm_0, self.layer_norm_1)
|
||||
|
||||
inputs += (past_key, past_value)
|
||||
hidden_states, new_key, new_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=4)
|
||||
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
|
||||
key_states, value_states = past_key_value.update(new_key, new_value, self.layer_idx, cache_kwargs)
|
||||
else:
|
||||
backend_cls = self.backend_cls_prefill
|
||||
inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
|
||||
inputs += (self.layer_norm_0, self.layer_norm_1)
|
||||
hidden_states, past_key, past_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=1)
|
||||
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
|
||||
key_states, value_states = past_key_value.update(past_key, past_value, self.layer_idx, cache_kwargs)
|
||||
backend_cls = self.backend_cls_prefill
|
||||
inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
|
||||
inputs += (self.layer_norm_0, self.layer_norm_1)
|
||||
# print("start run_model prefill")
|
||||
hidden_states, past_key, past_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=1)
|
||||
# print("end run model prefill")
|
||||
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
|
||||
key_states, value_states = past_key_value.update(past_key, past_value, self.layer_idx, cache_kwargs)
|
||||
|
||||
outputs = (hidden_states,)
|
||||
outputs += (past_key_value,)
|
||||
|
|
@ -722,44 +663,36 @@ if __name__ == "__main__":
|
|||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
parser.add_argument('--max-seq-len', type=int, default=1024)
|
||||
parser.add_argument('--transpose-value-cache', action="store_true", default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
pipeline = True # default
|
||||
max_seq_len = 1024 # default
|
||||
if pipeline:
|
||||
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
||||
os.environ['MASTER_PORT'] = '29501'
|
||||
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
||||
os.environ['MASTER_PORT'] = '29501'
|
||||
|
||||
dist.init_process_group()
|
||||
my_rank = dist.get_rank()
|
||||
my_size = dist.get_world_size()
|
||||
logger.info(f"rank: {my_rank}, size: {my_size}")
|
||||
dist.init_process_group()
|
||||
my_rank = dist.get_rank()
|
||||
my_size = dist.get_world_size()
|
||||
logger.info(f"rank: {my_rank}, size: {my_size}")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
|
||||
load_in_low_bit="sym_int4", pipeline_parallel_stages=2)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16,
|
||||
trust_remote_code=True, attn_implementation="eager",
|
||||
load_in_low_bit="sym_int4", pipeline_parallel_stages=2)
|
||||
|
||||
if my_rank == 0:
|
||||
print(model)
|
||||
dist.barrier()
|
||||
if my_rank == 0:
|
||||
print(model)
|
||||
dist.barrier()
|
||||
|
||||
if my_rank == 1:
|
||||
print(model)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
|
||||
load_in_low_bit="sym_int4")
|
||||
if my_rank == 1:
|
||||
print(model)
|
||||
|
||||
if pipeline:
|
||||
layer_start = model.layer_start
|
||||
layer_end = model.layer_end
|
||||
num_layers = model.num_layers
|
||||
else:
|
||||
layer_start = 0
|
||||
layer_end = 32
|
||||
num_layers = 32
|
||||
layer_start = model.layer_start
|
||||
layer_end = model.layer_end
|
||||
num_layers = model.num_layers
|
||||
num_heads = model.model.layers[layer_start].self_attn.num_heads
|
||||
num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
|
||||
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
||||
|
|
@ -776,12 +709,10 @@ if __name__ == "__main__":
|
|||
mlp_layer = curr_layer.mlp
|
||||
|
||||
weights = [
|
||||
# model.model.layers[i].input_layernorm.weight.to(torch.float16),
|
||||
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
|
||||
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
|
||||
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
|
||||
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
|
||||
# model.model.layers[i].post_attention_layernorm.weight.to(torch.float16),
|
||||
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
|
||||
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
|
||||
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale)]
|
||||
|
|
@ -797,13 +728,13 @@ if __name__ == "__main__":
|
|||
num_key_value_heads=num_key_value_heads,
|
||||
cached_cos=cached_cos,
|
||||
cached_sin=cached_sin,
|
||||
# rotary_emb=model.model.layers[i].self_attn.rotary_emb,
|
||||
layer_norm_0=layer_norm_0,
|
||||
layer_norm_1=layer_norm_1,
|
||||
layer_idx=layer_idx,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
max_seq_len=max_seq_len)
|
||||
max_seq_len=args.max_seq_len,
|
||||
transpose_value=args.transpose_value_cache)
|
||||
|
||||
layer_weights.extend(weights)
|
||||
input_layer_norm_weights.append(layer_norm_0)
|
||||
|
|
@ -822,7 +753,8 @@ if __name__ == "__main__":
|
|||
num_key_value_heads=num_key_value_heads,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
max_seq_len=max_seq_len,
|
||||
max_seq_len=args.max_seq_len,
|
||||
transpose_value=args.transpose_value_cache
|
||||
)
|
||||
|
||||
model.model.multi_decoder = multi_decoder
|
||||
|
|
|
|||
|
|
@ -86,7 +86,7 @@ class _BaseAutoModelClass:
|
|||
|
||||
if kwargs.get('torch_dtype', None) not in [None, 'auto', torch.float, torch.float16]:
|
||||
warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used")
|
||||
kwargs['torch_dtype'] = torch.float
|
||||
kwargs['torch_dtype'] = torch.float32
|
||||
|
||||
low_bit = kwargs.pop('load_in_low_bit', 'sym_int4')
|
||||
qtype_map = {
|
||||
|
|
|
|||
|
|
@ -18,48 +18,88 @@
|
|||
import torch
|
||||
from typing import Optional, Dict, Tuple, Any
|
||||
from transformers.cache_utils import DynamicCache
|
||||
import sys
|
||||
|
||||
|
||||
def init_fused_kv_cache(batch_size, num_heads, head_dim, current_length, max_length, dtype, device):
|
||||
key_cache_storage = torch.zeros(batch_size, num_heads,
|
||||
max_length, head_dim,
|
||||
dtype=dtype, device=device)
|
||||
value_cache_storage = torch.zeros(batch_size, num_heads,
|
||||
max_length, head_dim,
|
||||
dtype=dtype, device=device)
|
||||
def init_fused_kv_cache(batch_size, num_heads, head_dim,
|
||||
current_length, max_length, dtype,
|
||||
device, tranpose_value=False):
|
||||
if not tranpose_value:
|
||||
key_cache_storage = torch.zeros(batch_size, num_heads,
|
||||
max_length, head_dim,
|
||||
dtype=dtype, device=device)
|
||||
value_cache_storage = torch.zeros(batch_size, num_heads,
|
||||
max_length, head_dim,
|
||||
dtype=dtype, device=device)
|
||||
|
||||
key_cache = key_cache_storage.as_strided((batch_size, num_heads,
|
||||
current_length, head_dim),
|
||||
key_cache_storage.stride(),
|
||||
storage_offset=0)
|
||||
value_cache = value_cache_storage.as_strided((batch_size, num_heads,
|
||||
current_length, head_dim),
|
||||
value_cache_storage.stride(),
|
||||
key_cache = key_cache_storage.as_strided((batch_size, num_heads,
|
||||
current_length, head_dim),
|
||||
key_cache_storage.stride(),
|
||||
storage_offset=0)
|
||||
return key_cache, value_cache
|
||||
value_cache = value_cache_storage.as_strided((batch_size, num_heads,
|
||||
current_length, head_dim),
|
||||
value_cache_storage.stride(),
|
||||
storage_offset=0)
|
||||
return key_cache, value_cache
|
||||
else:
|
||||
key_cache_storage = torch.zeros(batch_size, num_heads,
|
||||
max_length, head_dim,
|
||||
dtype=dtype, device=device)
|
||||
value_cache_storage = torch.zeros(batch_size, num_heads,
|
||||
head_dim, max_length,
|
||||
dtype=dtype, device=device)
|
||||
|
||||
key_cache = key_cache_storage.as_strided((batch_size, num_heads,
|
||||
current_length, head_dim),
|
||||
key_cache_storage.stride(),
|
||||
storage_offset=0)
|
||||
value_cache = value_cache_storage.as_strided((batch_size, num_heads,
|
||||
head_dim, current_length),
|
||||
value_cache_storage.stride(),
|
||||
storage_offset=0)
|
||||
return key_cache, value_cache.transpose(-1, -2)
|
||||
|
||||
|
||||
def append_fused_kv_cache(cache_k, cache_v, key_states, value_states):
|
||||
new_size = (cache_k.size(0),
|
||||
cache_k.size(1),
|
||||
cache_k.size(2) + key_states.size(2),
|
||||
cache_k.size(3))
|
||||
new_cache_k = cache_k.as_strided(new_size, cache_k.stride(), storage_offset=0)
|
||||
new_cache_k[:, :, cache_k.size(2):cache_k.size(2) + key_states.size(2), :] = key_states
|
||||
new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
|
||||
new_cache_v[:, :, cache_v.size(2):cache_v.size(2) + key_states.size(2), :] = value_states
|
||||
return new_cache_k, new_cache_v
|
||||
def append_fused_kv_cache(cache_k, cache_v, key_states, value_states, transpose_value=False):
|
||||
if not transpose_value:
|
||||
new_size = (cache_k.size(0),
|
||||
cache_k.size(1),
|
||||
cache_k.size(2) + key_states.size(2),
|
||||
cache_k.size(3))
|
||||
new_cache_k = cache_k.as_strided(new_size, cache_k.stride(), storage_offset=0)
|
||||
new_cache_k[:, :, cache_k.size(2):cache_k.size(2) + key_states.size(2), :] = key_states
|
||||
new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
|
||||
new_cache_v[:, :, cache_v.size(2):cache_v.size(2) + key_states.size(2), :] = value_states
|
||||
return new_cache_k, new_cache_v
|
||||
else:
|
||||
new_size_key = (cache_k.size(0),
|
||||
cache_k.size(1),
|
||||
cache_k.size(2) + key_states.size(2),
|
||||
cache_k.size(3))
|
||||
new_cache_k = cache_k.as_strided(new_size_key, cache_k.stride(), storage_offset=0)
|
||||
new_cache_k[:, :, cache_k.size(2):cache_k.size(2) + key_states.size(2), :] = key_states
|
||||
|
||||
new_size_value = (cache_v.size(0),
|
||||
cache_v.size(1),
|
||||
cache_v.size(3),
|
||||
cache_v.size(2) + value_states.size(3),
|
||||
)
|
||||
raw_cache_v = cache_v.transpose(-1, -2)
|
||||
new_cache_v = raw_cache_v.as_strided(new_size_value, raw_cache_v.stride(), storage_offset=0)
|
||||
start = raw_cache_v.size(3)
|
||||
end = raw_cache_v.size(3) + value_states.size(3)
|
||||
new_cache_v[:, :, :, start:end] = value_states
|
||||
return new_cache_k, new_cache_v.transpose(-1, -2)
|
||||
|
||||
|
||||
class DynamicFusedNormalCache(DynamicCache):
|
||||
# Experimental support for fused decoderlayer implementation on NPU
|
||||
# Currently only for llama2
|
||||
KV_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.key_cache: Dict[int, torch.Tensor] = {}
|
||||
self.value_cache: Dict[int, torch.Tensor] = {}
|
||||
self._seen_tokens = 0 # Used in `generate` to keep how many tokens the cache has seen
|
||||
self.min_layer_idx = sys.maxsize
|
||||
|
||||
def update(
|
||||
self,
|
||||
|
|
@ -71,28 +111,21 @@ class DynamicFusedNormalCache(DynamicCache):
|
|||
|
||||
batch_size, num_heads, seq_len, head_dim = key_states.shape
|
||||
|
||||
max_seq_length = cache_kwargs.pop("max_seq_len", None)
|
||||
transpose_value = cache_kwargs.pop("transpose_value", None)
|
||||
|
||||
if layer_idx == 0 or layer_idx == 16:
|
||||
if hasattr(self, "_seen_tokens"):
|
||||
# 4.39 uses `_seen_tokens`
|
||||
self._seen_tokens += seq_len
|
||||
else:
|
||||
# 4.37 uses `seen_tokens`
|
||||
self.seen_tokens += seq_len
|
||||
max_seq_length = cache_kwargs["max_seq_len"] if "max_seq_len" in cache_kwargs else None
|
||||
transpose_value = cache_kwargs["transpose"] if "transpose" in cache_kwargs else False
|
||||
|
||||
# Update the cache
|
||||
# if len(self.key_cache) <= layer_idx:
|
||||
if layer_idx not in self.key_cache:
|
||||
max_len = max_seq_length if max_seq_length is not None else key_states.size(2) + \
|
||||
self.KV_ALLOC_BLOCK_LENGTH
|
||||
max_len = max_seq_length
|
||||
k_cache, v_cache = init_fused_kv_cache(
|
||||
batch_size, num_heads, head_dim,
|
||||
0, max_len,
|
||||
key_states.dtype, key_states.device,
|
||||
tranpose_value=transpose_value,
|
||||
)
|
||||
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
|
||||
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states,
|
||||
transpose_value=transpose_value)
|
||||
|
||||
self.key_cache[layer_idx] = k_cache
|
||||
self.value_cache[layer_idx] = v_cache
|
||||
|
|
@ -101,7 +134,8 @@ class DynamicFusedNormalCache(DynamicCache):
|
|||
v_cache = self.value_cache[layer_idx]
|
||||
|
||||
kv_seq_len = k_cache.size(2) + key_states.size(2)
|
||||
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
|
||||
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states,
|
||||
transpose_value=transpose_value)
|
||||
self.key_cache[layer_idx] = k_cache
|
||||
self.value_cache[layer_idx] = v_cache
|
||||
|
||||
|
|
@ -113,3 +147,11 @@ class DynamicFusedNormalCache(DynamicCache):
|
|||
|
||||
for idx, layer in self.key_cache.items():
|
||||
return layer.shape[-2]
|
||||
|
||||
@property
|
||||
def _seen_tokens(self):
|
||||
return self.get_seq_length()
|
||||
|
||||
@property
|
||||
def seen_tokens(self):
|
||||
return self.get_seq_length()
|
||||
|
|
|
|||
Loading…
Reference in a new issue