follow up on experimental support of fused decoder layer for llama2 (#11785)
* clean up and support transpose value cache * refine * fix style * fix style
This commit is contained in:
		
							parent
							
								
									cb79dcda93
								
							
						
					
					
						commit
						51bcac1229
					
				
					 3 changed files with 301 additions and 327 deletions
				
			
		| 
						 | 
				
			
			@ -15,7 +15,7 @@
 | 
			
		|||
#
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
os.environ["OMP_NUM_THREADS"] = "4"
 | 
			
		||||
os.environ["OMP_NUM_THREADS"] = "8"
 | 
			
		||||
os.environ["IPEX_LLM_LAST_LM_HEAD"] = "1"
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
| 
						 | 
				
			
			@ -40,6 +40,7 @@ from functools import partial
 | 
			
		|||
import torch.nn.functional as F
 | 
			
		||||
import torch.nn.parallel
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
from filelock import FileLock
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
| 
						 | 
				
			
			@ -116,164 +117,12 @@ def run_model(
 | 
			
		|||
    return results
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LowBitLlamaDecoderlayer(NNFactory):
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_shape: Sequence[int],
 | 
			
		||||
        attenion_mask_shape=None,
 | 
			
		||||
        position_id_shape=None,
 | 
			
		||||
        past_key_shape=None,
 | 
			
		||||
        past_value_shape=None,
 | 
			
		||||
        input_layernorm_shape=None,
 | 
			
		||||
        post_layernorm_shape=None,
 | 
			
		||||
        *,
 | 
			
		||||
        num_heads: int,
 | 
			
		||||
        num_key_value_heads: int,
 | 
			
		||||
        cached_cos,
 | 
			
		||||
        cached_sin,
 | 
			
		||||
        mode: str = "prefill",
 | 
			
		||||
        dtype: np.dtype = np.int8,
 | 
			
		||||
        max_seq_len: int = 128,
 | 
			
		||||
        profile: bool = False,
 | 
			
		||||
        device: str = "NPU",
 | 
			
		||||
        rms_norm_eps,
 | 
			
		||||
        intermediate_size,
 | 
			
		||||
        **additional_args
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__(profile, device)
 | 
			
		||||
        self.max_seq_len = max_seq_len
 | 
			
		||||
        self.intermediate_size = intermediate_size
 | 
			
		||||
        eps = self.constant(rms_norm_eps)
 | 
			
		||||
        
 | 
			
		||||
        self.batch_size, self.seq_len, self.hidden_size = hidden_shape
 | 
			
		||||
        
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
 | 
			
		||||
        self.num_heads = num_heads
 | 
			
		||||
        self.num_key_value_heads = num_key_value_heads
 | 
			
		||||
        
 | 
			
		||||
        self.head_dim = self.hidden_size // self.num_heads
 | 
			
		||||
        
 | 
			
		||||
        # define input, the order self.parameter matters
 | 
			
		||||
        input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
 | 
			
		||||
 | 
			
		||||
        # Self Attention
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
 | 
			
		||||
        else:
 | 
			
		||||
            attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
 | 
			
		||||
        
 | 
			
		||||
        position_ids = self.parameter((self.batch_size, self.seq_len))
 | 
			
		||||
 | 
			
		||||
        input_layernorm_weight = self.parameter((1, self.hidden_size,))
 | 
			
		||||
        post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
 | 
			
		||||
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
			
		||||
            past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
			
		||||
 | 
			
		||||
        residual = input
 | 
			
		||||
        
 | 
			
		||||
        input_2d = self.reshape(input, (self.batch_size * self.seq_len, self.hidden_size))
 | 
			
		||||
 | 
			
		||||
        # input_layernorm forward
 | 
			
		||||
        input_2d = self.convert_to_fp32(input_2d)
 | 
			
		||||
        variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
 | 
			
		||||
        input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
 | 
			
		||||
        input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
 | 
			
		||||
        input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
 | 
			
		||||
        input_2d = self.convert_to_fp16(input_2d)
 | 
			
		||||
 | 
			
		||||
        query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
 | 
			
		||||
        key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
 | 
			
		||||
        value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
 | 
			
		||||
 | 
			
		||||
        cos = self.constant(cached_cos)
 | 
			
		||||
        cos = self.unsqueeze(cos, axis=0)
 | 
			
		||||
 | 
			
		||||
        sin = self.constant(cached_sin)
 | 
			
		||||
        sin = self.unsqueeze(sin, axis=0)
 | 
			
		||||
 | 
			
		||||
        query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
 | 
			
		||||
        key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
			
		||||
        value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
			
		||||
        
 | 
			
		||||
        query_states = self.transpose(query_states, [0, 2, 1, 3])
 | 
			
		||||
        key_states = self.transpose(key_states, [0, 2, 1, 3])
 | 
			
		||||
        value_states = self.transpose(value_states, [0, 2, 1, 3])
 | 
			
		||||
        
 | 
			
		||||
        query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
 | 
			
		||||
        new_key_states = key_states
 | 
			
		||||
        new_value_states = value_states
 | 
			
		||||
 | 
			
		||||
        invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
 | 
			
		||||
        
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            key_states = self.concat(past_key, key_states, axis=-2)
 | 
			
		||||
            value_states = self.concat(past_value, value_states, axis=-2)
 | 
			
		||||
 | 
			
		||||
        attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
 | 
			
		||||
        attn_weight = self.eltwise_add(attn_weight, attention_mask)
 | 
			
		||||
        attn_weight = self.convert_to_fp32(attn_weight)
 | 
			
		||||
        attn_weight = self.softmax(attn_weight, -1)
 | 
			
		||||
        attn_weight = self.convert_to_fp16(attn_weight)
 | 
			
		||||
        attn_output = self.matmul(attn_weight, value_states, False, False)
 | 
			
		||||
 | 
			
		||||
        attn_output = self.transpose(attn_output, [0, 2, 1, 3])
 | 
			
		||||
        attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
 | 
			
		||||
 | 
			
		||||
        attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=dtype)
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.eltwise_add(residual, attn_output)
 | 
			
		||||
 | 
			
		||||
        # Fully Connected
 | 
			
		||||
        residual = hidden_states
 | 
			
		||||
        hidden_states = self.convert_to_fp32(hidden_states)
 | 
			
		||||
        variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
 | 
			
		||||
        hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
 | 
			
		||||
        post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
 | 
			
		||||
        hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
 | 
			
		||||
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
			
		||||
 | 
			
		||||
        # mlp
 | 
			
		||||
        mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
			
		||||
                          bias=False, wt_dtype=dtype)
 | 
			
		||||
        mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
 | 
			
		||||
                          bias=False, wt_dtype=dtype)  # type: ignore[attr-defined]
 | 
			
		||||
        mm1 = self.eltwise_mul(self.swish(mm1), mm2)  # type: ignore[attr-defined]
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=dtype)
 | 
			
		||||
        
 | 
			
		||||
        hidden_states = self.eltwise_add(residual, hidden_states)
 | 
			
		||||
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
			
		||||
        
 | 
			
		||||
        # hacking to add key, value to outputs
 | 
			
		||||
        new_key_states = self.convert_to_fp16(new_key_states)
 | 
			
		||||
        new_value_states = self.convert_to_fp16(new_value_states)
 | 
			
		||||
 | 
			
		||||
        self.compile()
 | 
			
		||||
    
 | 
			
		||||
    def rotate_half(self, x):
 | 
			
		||||
        x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
 | 
			
		||||
        x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
 | 
			
		||||
        return self.concat(self.negative(x2), x1, axis=-1)
 | 
			
		||||
    
 | 
			
		||||
    def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
 | 
			
		||||
        position_ids = self.squeeze(position_ids)
 | 
			
		||||
        cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
			
		||||
        sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
 | 
			
		||||
        cos = self.unsqueeze(cos, [1])
 | 
			
		||||
        sin = self.unsqueeze(sin, [1])
 | 
			
		||||
        
 | 
			
		||||
        q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
 | 
			
		||||
        k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
 | 
			
		||||
        
 | 
			
		||||
        return q_embed, k_embed
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        # batch_size: int,
 | 
			
		||||
        # seq_len: int,
 | 
			
		||||
        # hidden_size: int,
 | 
			
		||||
        hidden_shape: Sequence[int],
 | 
			
		||||
        *shapes,
 | 
			
		||||
        num_heads: int,
 | 
			
		||||
| 
						 | 
				
			
			@ -281,16 +130,16 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
        num_layers: int,
 | 
			
		||||
        cached_cos,
 | 
			
		||||
        cached_sin,
 | 
			
		||||
        input_layernorm_weights,
 | 
			
		||||
        post_attn_layernorm_weights,
 | 
			
		||||
        input_layernorm_weights=None,
 | 
			
		||||
        post_attn_layernorm_weights=None,
 | 
			
		||||
        mode: str = "prefill",
 | 
			
		||||
        dtype: np.dtype = np.int8,
 | 
			
		||||
        max_seq_len: int = 128,
 | 
			
		||||
        max_seq_len: int = 1024,
 | 
			
		||||
        transpose_value: bool = False,
 | 
			
		||||
        profile: bool = False,
 | 
			
		||||
        device: str = "NPU",
 | 
			
		||||
        rms_norm_eps,
 | 
			
		||||
        intermediate_size,
 | 
			
		||||
        **additional_args
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__(profile, device)
 | 
			
		||||
        self.max_seq_len = max_seq_len
 | 
			
		||||
| 
						 | 
				
			
			@ -301,6 +150,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
        self.batch_size, self.seq_len, self.hidden_size = hidden_shape
 | 
			
		||||
        self.mode = mode
 | 
			
		||||
        self.rms_norm_eps = rms_norm_eps
 | 
			
		||||
        self.transpose_value = transpose_value
 | 
			
		||||
 | 
			
		||||
        cos = self.constant(self.cached_cos)
 | 
			
		||||
        self.cos = self.unsqueeze(cos, axis=0)
 | 
			
		||||
| 
						 | 
				
			
			@ -309,11 +159,16 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
        self.sin = self.unsqueeze(sin, axis=0)
 | 
			
		||||
        
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
 | 
			
		||||
            assert self.seq_len == 1, "seq_len must be 1 for decode mode"
 | 
			
		||||
            self.kv_seq_len = self.max_seq_len + 1
 | 
			
		||||
        else:
 | 
			
		||||
            self.kv_seq_len = self.seq_len
 | 
			
		||||
 | 
			
		||||
        self.num_heads = num_heads
 | 
			
		||||
        self.num_key_value_heads = num_key_value_heads
 | 
			
		||||
        
 | 
			
		||||
        self.head_dim = self.hidden_size // self.num_heads
 | 
			
		||||
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
 | 
			
		||||
        
 | 
			
		||||
        # define input, the order self.parameter matters
 | 
			
		||||
        input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
 | 
			
		||||
| 
						 | 
				
			
			@ -324,21 +179,34 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
        else:
 | 
			
		||||
            attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
 | 
			
		||||
            
 | 
			
		||||
        
 | 
			
		||||
        position_ids = self.parameter((self.batch_size, self.seq_len))
 | 
			
		||||
        past_keys = []
 | 
			
		||||
        past_values = []
 | 
			
		||||
        if mode == "decode":
 | 
			
		||||
            for i in range(num_layers):
 | 
			
		||||
                past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
			
		||||
                if transpose_value:
 | 
			
		||||
                    past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len))
 | 
			
		||||
                else:
 | 
			
		||||
                    past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
 | 
			
		||||
                past_keys.append(past_key)
 | 
			
		||||
                past_values.append(past_value)
 | 
			
		||||
        else:
 | 
			
		||||
            past_key = None
 | 
			
		||||
            past_value = None
 | 
			
		||||
            past_keys = [None] * num_layers
 | 
			
		||||
            past_values = [None] * num_layers
 | 
			
		||||
        
 | 
			
		||||
        if input_layernorm_weights is None:
 | 
			
		||||
            assert post_attn_layernorm_weights is None
 | 
			
		||||
            input_layernorm_weights = []
 | 
			
		||||
            post_attn_layernorm_weights = []
 | 
			
		||||
            for i in range(num_layers):
 | 
			
		||||
                input_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
 | 
			
		||||
                post_attn_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
 | 
			
		||||
        else:
 | 
			
		||||
            input_layernorm_weights = [self.constant(w) for w in input_layernorm_weights]
 | 
			
		||||
            post_attn_layernorm_weights = [self.constant(w) for w in post_attn_layernorm_weights]
 | 
			
		||||
 | 
			
		||||
        # input_layernorm_weight = self.parameter((1, self.hidden_size,))
 | 
			
		||||
        # post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
 | 
			
		||||
        hidden_states = input
 | 
			
		||||
        
 | 
			
		||||
        curr_key_values = []
 | 
			
		||||
| 
						 | 
				
			
			@ -352,6 +220,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
                                                                                 past_value=past_values[i],)
 | 
			
		||||
            curr_key_values.append((new_key_states, new_value_states))
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        # define outputs
 | 
			
		||||
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
			
		||||
        
 | 
			
		||||
| 
						 | 
				
			
			@ -359,8 +228,23 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
            new_key_states = self.convert_to_fp16(curr_key_values[i][0])
 | 
			
		||||
            new_value_states = self.convert_to_fp16(curr_key_values[i][1])
 | 
			
		||||
 | 
			
		||||
        with FileLock("decoder_compile.lock"):
 | 
			
		||||
            print("start compiling")
 | 
			
		||||
            self.compile()
 | 
			
		||||
 | 
			
		||||
    def repeat_kv(self, hidden_states, n_rep, transpose=False):
 | 
			
		||||
        if n_rep == 1:
 | 
			
		||||
            return hidden_states
 | 
			
		||||
        if not transpose:
 | 
			
		||||
            hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.kv_seq_len, self.head_dim])
 | 
			
		||||
            hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.kv_seq_len, self.head_dim])
 | 
			
		||||
            hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.kv_seq_len, self.head_dim])
 | 
			
		||||
        else:
 | 
			
		||||
            hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.head_dim, self.kv_seq_len])
 | 
			
		||||
            hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.head_dim, self.kv_seq_len])
 | 
			
		||||
            hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.head_dim, self.kv_seq_len])
 | 
			
		||||
        return hidden_states
 | 
			
		||||
 | 
			
		||||
    def build_decoder(self, hidden_states, attention_mask, position_ids,
 | 
			
		||||
                      input_layernorm_weight, post_attention_layernorm_weight,
 | 
			
		||||
                      past_key = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -372,10 +256,11 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
 | 
			
		||||
        # input layernorm
 | 
			
		||||
        input_2d = self.convert_to_fp32(input_2d)
 | 
			
		||||
        # variance = self.reduce_mean(self.eltwise_mul(input_2d, input_2d), -1, keep_dims=True)
 | 
			
		||||
        variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
 | 
			
		||||
        eps = self.constant(self.rms_norm_eps)
 | 
			
		||||
        input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
 | 
			
		||||
        input_layernorm_weight = self.constant(input_layernorm_weight)
 | 
			
		||||
        # input_layernorm_weight = self.constant(input_layernorm_weight)
 | 
			
		||||
        input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
 | 
			
		||||
        input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
 | 
			
		||||
        input_2d = self.convert_to_fp16(input_2d)
 | 
			
		||||
| 
						 | 
				
			
			@ -385,33 +270,47 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
        key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
			
		||||
        value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
 | 
			
		||||
        
 | 
			
		||||
        # cos = self.constant(self.cached_cos)
 | 
			
		||||
        # cos = self.unsqueeze(cos, axis=0)
 | 
			
		||||
 | 
			
		||||
        # sin = self.constant(self.cached_sin)
 | 
			
		||||
        # sin = self.unsqueeze(sin, axis=0)
 | 
			
		||||
 | 
			
		||||
        query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
 | 
			
		||||
        key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
			
		||||
        value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
 | 
			
		||||
        
 | 
			
		||||
        query_states = self.transpose(query_states, [0, 2, 1, 3])
 | 
			
		||||
        key_states = self.transpose(key_states, [0, 2, 1, 3])
 | 
			
		||||
        if self.transpose_value:
 | 
			
		||||
            value_states = self.transpose(value_states, [0, 2, 3, 1])
 | 
			
		||||
        else:
 | 
			
		||||
            value_states = self.transpose(value_states, [0, 2, 1, 3])
 | 
			
		||||
        
 | 
			
		||||
        query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, self.cos, self.sin, position_ids)
 | 
			
		||||
        new_key_states = key_states
 | 
			
		||||
        new_value_states = value_states
 | 
			
		||||
        
 | 
			
		||||
        # repeat_kv cannot be implemented because Broadcast op is needed
 | 
			
		||||
        # key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        # value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
        invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
 | 
			
		||||
 
 | 
			
		||||
        
 | 
			
		||||
        if self.mode == "decode":
 | 
			
		||||
            key_states = self.concat(past_key, key_states, axis=-2)
 | 
			
		||||
            if self.transpose_value:
 | 
			
		||||
                value_states = self.concat(past_value, value_states, axis=-1)
 | 
			
		||||
            else:
 | 
			
		||||
                value_states = self.concat(past_value, value_states, axis=-2)
 | 
			
		||||
        
 | 
			
		||||
        # repeat_kv cannot be implemented because Broadcast op is needed
 | 
			
		||||
        key_states = self.repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = self.repeat_kv(value_states, self.num_key_value_groups, self.transpose_value)
 | 
			
		||||
        
 | 
			
		||||
        attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
 | 
			
		||||
        attn_weight = self.eltwise_add(attn_weight, attention_mask)
 | 
			
		||||
        attn_weight = self.convert_to_fp32(attn_weight)
 | 
			
		||||
        attn_weight = self.softmax(attn_weight, -1)
 | 
			
		||||
        attn_weight = self.convert_to_fp16(attn_weight)
 | 
			
		||||
        attn_output = self.matmul(attn_weight, value_states, False, False)
 | 
			
		||||
        attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        attn_output = self.transpose(attn_output, [0, 2, 1, 3])
 | 
			
		||||
        attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
 | 
			
		||||
| 
						 | 
				
			
			@ -422,10 +321,12 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
 | 
			
		|||
 | 
			
		||||
        # Fully Connected
 | 
			
		||||
        residual = hidden_states
 | 
			
		||||
        # post_attention_layernorm forward
 | 
			
		||||
        
 | 
			
		||||
        hidden_states = self.convert_to_fp32(hidden_states)
 | 
			
		||||
        variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
 | 
			
		||||
        hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
 | 
			
		||||
        post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
 | 
			
		||||
        # post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
 | 
			
		||||
        post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
 | 
			
		||||
        hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
 | 
			
		||||
        hidden_states = self.convert_to_fp16(hidden_states)
 | 
			
		||||
| 
						 | 
				
			
			@ -472,12 +373,17 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		|||
        layer_indexes : List[int],
 | 
			
		||||
        cached_cos,
 | 
			
		||||
        cached_sin,
 | 
			
		||||
        # rotary_emb,
 | 
			
		||||
        # batch_size: int,
 | 
			
		||||
        # seq_len: int,
 | 
			
		||||
        # hidden_size: int,
 | 
			
		||||
        num_heads: int,
 | 
			
		||||
        head_dim: int,
 | 
			
		||||
        num_key_value_heads: int,
 | 
			
		||||
        rms_norm_eps,
 | 
			
		||||
        intermediate_size,
 | 
			
		||||
        max_seq_len: int = 128,
 | 
			
		||||
        max_seq_len: int = 1024,
 | 
			
		||||
        transpose_value: bool = False,
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -491,38 +397,74 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		|||
        self.op_id = str(uuid.uuid4())
 | 
			
		||||
        # self.layer_idx = layer_idx
 | 
			
		||||
        self.max_seq_len = max_seq_len
 | 
			
		||||
        self.transpose_value = transpose_value
 | 
			
		||||
        # self.rotary_emb = rotary_emb
 | 
			
		||||
        if isinstance(parameters[0], tuple):  # weight, scale from QuantizedLinear
 | 
			
		||||
            np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
 | 
			
		||||
            assert np_dtype == np.uint8
 | 
			
		||||
            assert parameters[0][1].dtype == torch.float16, parameters[0]
 | 
			
		||||
        else:  # FP16 Linear
 | 
			
		||||
            invalidInputError(False, "Please use int4 optimization")
 | 
			
		||||
            assert False, "should not be here"
 | 
			
		||||
            np_dtype = np.float16
 | 
			
		||||
        
 | 
			
		||||
        self.layer_indexes = layer_indexes
 | 
			
		||||
        self.num_layers_1 = len(self.layer_indexes) // 2
 | 
			
		||||
        self.num_layers_0 = len(self.layer_indexes) - self.num_layers_1
 | 
			
		||||
 | 
			
		||||
        assert self.num_layers_1 + self.num_layers_0 == len(input_laynorm_weights)
 | 
			
		||||
        assert self.num_layers_1 + self.num_layers_0 == len(post_attn_layernorm_weights)
 | 
			
		||||
 | 
			
		||||
        print("create dedcoder layer")
 | 
			
		||||
        self.backend_cls_decode = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
 | 
			
		||||
                                          input_layernorm_weights=input_laynorm_weights,
 | 
			
		||||
                                          post_attn_layernorm_weights=post_attn_layernorm_weights,
 | 
			
		||||
        self.backend_cls_decode_0 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
 | 
			
		||||
                                          input_layernorm_weights=input_laynorm_weights[:self.num_layers_0],
 | 
			
		||||
                                          post_attn_layernorm_weights=post_attn_layernorm_weights[:self.num_layers_0],
 | 
			
		||||
                                          cached_cos=cached_cos,
 | 
			
		||||
                                          cached_sin=cached_sin,
 | 
			
		||||
                                          num_heads=num_heads,
 | 
			
		||||
                                          num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                                          num_layers=len(layer_indexes),
 | 
			
		||||
                                          num_layers=self.num_layers_0,
 | 
			
		||||
                                          max_seq_len=max_seq_len,
 | 
			
		||||
                                          rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                                          intermediate_size=intermediate_size,
 | 
			
		||||
                                          mode="decode",
 | 
			
		||||
                                          transpose_value=self.transpose_value,
 | 
			
		||||
                                          dtype=np_dtype)
 | 
			
		||||
        self.backend_cls_decode_1 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
 | 
			
		||||
                                          input_layernorm_weights=input_laynorm_weights[self.num_layers_0:],
 | 
			
		||||
                                          post_attn_layernorm_weights=post_attn_layernorm_weights[self.num_layers_0:],
 | 
			
		||||
                                          cached_cos=cached_cos,
 | 
			
		||||
                                          cached_sin=cached_sin,
 | 
			
		||||
                                          num_heads=num_heads,
 | 
			
		||||
                                          num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                                          num_layers=self.num_layers_1,
 | 
			
		||||
                                          max_seq_len=max_seq_len,
 | 
			
		||||
                                          rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                                          intermediate_size=intermediate_size,
 | 
			
		||||
                                          mode="decode",
 | 
			
		||||
                                          transpose_value=self.transpose_value,
 | 
			
		||||
                                          dtype=np_dtype)
 | 
			
		||||
        print("created dedcoder layer")
 | 
			
		||||
 | 
			
		||||
        self.backend_cls_decode.setWeights(3+len(layer_indexes)*2, self.op_id, *op_parameters)
 | 
			
		||||
        print("weight setted")
 | 
			
		||||
        backend_lib.run(self.backend_cls_decode._mm,)
 | 
			
		||||
        assert (self.num_layers_0 + self.num_layers_1) * 7 == len(op_parameters)
 | 
			
		||||
        
 | 
			
		||||
        self.backend_cls_decode_0.setWeights(3+self.num_layers_0*2, self.op_id, *op_parameters[:self.num_layers_0*7])
 | 
			
		||||
        backend_lib.run(self.backend_cls_decode_0._mm)
 | 
			
		||||
 | 
			
		||||
        print("first inference done")
 | 
			
		||||
        self.kv_cache_c_parameter_handel = None
 | 
			
		||||
 | 
			
		||||
        self.backend_cls_decode_1.setWeights(3+self.num_layers_1*2, self.op_id, *op_parameters[self.num_layers_0*7:])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        print("weight setted")
 | 
			
		||||
        backend_lib.run(self.backend_cls_decode_1._mm)
 | 
			
		||||
 | 
			
		||||
        print("2nd inference done")
 | 
			
		||||
 | 
			
		||||
        self.kv_cache_c_parameter_handel = (None, None)
 | 
			
		||||
        self.kv_cache_parameters = None
 | 
			
		||||
        self.kv_cache_prefetched = False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def forward(self,
 | 
			
		||||
                hidden_states: torch.Tensor,
 | 
			
		||||
                attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -541,8 +483,6 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		|||
            torch.Tensor: result
 | 
			
		||||
        """
 | 
			
		||||
        seq_len = hidden_states.shape[1]
 | 
			
		||||
        backend_cls = self.backend_cls_decode
 | 
			
		||||
 | 
			
		||||
        pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
 | 
			
		||||
 | 
			
		||||
        pad_mask = (0, pad_len)
 | 
			
		||||
| 
						 | 
				
			
			@ -551,7 +491,8 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		|||
        padded_attention_mask[:,:,:,-1] = 0.0
 | 
			
		||||
        inputs = (hidden_states.to(torch.float16),
 | 
			
		||||
                    padded_attention_mask,
 | 
			
		||||
                  position_ids,)
 | 
			
		||||
                    position_ids,
 | 
			
		||||
                    )
 | 
			
		||||
 | 
			
		||||
        if self.kv_cache_parameters is None:
 | 
			
		||||
            self.kv_cache_parameters = []
 | 
			
		||||
| 
						 | 
				
			
			@ -562,56 +503,76 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
 | 
			
		|||
            cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
 | 
			
		||||
            current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
 | 
			
		||||
            if cached_prt != current_ptr:
 | 
			
		||||
                # print("kv cache changed")
 | 
			
		||||
                self.kv_cache_parameters = []
 | 
			
		||||
                self.kv_cache_c_parameter_handel = None
 | 
			
		||||
                self.kv_cache_c_parameter_handel = (None, None)
 | 
			
		||||
                self.kv_cache_prefetched = False
 | 
			
		||||
 | 
			
		||||
        if len(self.kv_cache_parameters) == 0:
 | 
			
		||||
            for idx in self.layer_indexes:
 | 
			
		||||
                past_key = past_key_value.key_cache[idx]
 | 
			
		||||
                past_value = past_key_value.value_cache[idx]
 | 
			
		||||
 | 
			
		||||
                assert past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
 | 
			
		||||
 | 
			
		||||
                new_size = (past_key.size(0),
 | 
			
		||||
                            past_key.size(1),
 | 
			
		||||
                            self.max_seq_len,
 | 
			
		||||
                            past_key.size(3))
 | 
			
		||||
                past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
 | 
			
		||||
                assert past_key.is_contiguous()
 | 
			
		||||
                past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
 | 
			
		||||
                if self.transpose_value:
 | 
			
		||||
                    past_value = past_value.transpose(-1, -2)
 | 
			
		||||
                assert past_value.is_contiguous()
 | 
			
		||||
 | 
			
		||||
                self.kv_cache_parameters.append(past_key)
 | 
			
		||||
                self.kv_cache_parameters.append(past_value)
 | 
			
		||||
            self.kv_cache_c_parameter_handel = self.backend_cls_decode.create_parameters([p.numpy() for p in self.kv_cache_parameters])
 | 
			
		||||
            handle_0 = self.backend_cls_decode_0.create_parameters([p.numpy() for p in self.kv_cache_parameters[:self.num_layers_0*2]])
 | 
			
		||||
            handle_1 = self.backend_cls_decode_1.create_parameters([p.numpy() for p in self.kv_cache_parameters[self.num_layers_0*2:]])
 | 
			
		||||
            assert len(self.kv_cache_parameters) == (self.num_layers_0 + self.num_layers_1) * 2
 | 
			
		||||
            self.kv_cache_c_parameter_handel = (handle_0, handle_1)
 | 
			
		||||
 | 
			
		||||
        x_np = [elem.to(torch.float16).numpy() for elem in inputs]
 | 
			
		||||
 | 
			
		||||
        key_value_states = []
 | 
			
		||||
 | 
			
		||||
        with record_function(f"npu_factory"):
 | 
			
		||||
            if not self.kv_cache_prefetched:
 | 
			
		||||
                self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
 | 
			
		||||
                self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
 | 
			
		||||
                self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
 | 
			
		||||
 | 
			
		||||
            for idx, elem in enumerate(x_np):
 | 
			
		||||
                self.backend_cls_decode.set_input_tensor(elem, idx)
 | 
			
		||||
            models_ptr = (ctypes.POINTER(ctypes.c_char) * 2)(self.backend_cls_decode_0._mm, self.backend_cls_decode_1._mm)
 | 
			
		||||
            inputs_ptr = (ctypes.c_void_p * 3)(x_np[0].ctypes.data_as(ctypes.c_void_p), x_np[1].ctypes.data_as(ctypes.c_void_p), x_np[2].ctypes.data_as(ctypes.c_void_p))
 | 
			
		||||
 | 
			
		||||
            backend_lib.run(self.backend_cls_decode._mm,)
 | 
			
		||||
            ret = self.backend_cls_decode.out
 | 
			
		||||
            results = [adapt_output_tensor(r, r.shape, torch.float16) for r in ret]
 | 
			
		||||
            backend_lib.run_decoders(models_ptr, inputs_ptr, 2, 3)
 | 
			
		||||
 | 
			
		||||
        hidden_states = results[0]
 | 
			
		||||
        key_value_states = results[1:]
 | 
			
		||||
        for i in range(1, len(self.backend_cls_decode_0.torch_out)):
 | 
			
		||||
            key_value_states.append(self.backend_cls_decode_0.torch_out[i])
 | 
			
		||||
        
 | 
			
		||||
        cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
 | 
			
		||||
        for i in range(1, len(self.backend_cls_decode_1.torch_out)):
 | 
			
		||||
            key_value_states.append(self.backend_cls_decode_1.torch_out[i])
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.backend_cls_decode_1.torch_out[0]
 | 
			
		||||
        
 | 
			
		||||
        cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
 | 
			
		||||
        for i in range(len(self.layer_indexes)):
 | 
			
		||||
            key_states, value_states = past_key_value.update(key_value_states[2*i],
 | 
			
		||||
                                                             key_value_states[2*i+1],
 | 
			
		||||
                                                             self.layer_indexes[i], cache_kwargs)
 | 
			
		||||
        
 | 
			
		||||
        self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
 | 
			
		||||
        self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
 | 
			
		||||
        self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
 | 
			
		||||
        self.kv_cache_prefetched = True
 | 
			
		||||
 | 
			
		||||
        outputs = (hidden_states,)
 | 
			
		||||
        outputs += (past_key_value,)
 | 
			
		||||
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
 | 
			
		||||
    """LLAMA MLP operation NPU backend."""
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        parameters: List[torch.Tensor],
 | 
			
		||||
| 
						 | 
				
			
			@ -625,42 +586,37 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
 | 
			
		|||
        rms_norm_eps,
 | 
			
		||||
        intermediate_size,
 | 
			
		||||
        max_seq_len: int = 128,
 | 
			
		||||
        transpose_value: bool = False,
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.op_parameters = parameters
 | 
			
		||||
        self.op_id = str(uuid.uuid4())
 | 
			
		||||
        self.layer_idx = layer_idx
 | 
			
		||||
        self.max_seq_len = max_seq_len
 | 
			
		||||
        self.transpose_value = transpose_value
 | 
			
		||||
        # self.rotary_emb = rotary_emb
 | 
			
		||||
        if isinstance(parameters[0], tuple):  # weight, scale from QuantizedLinear
 | 
			
		||||
            np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
 | 
			
		||||
        else:  # FP16 Linear
 | 
			
		||||
            np_dtype = np.float16
 | 
			
		||||
 | 
			
		||||
        self.backend_cls_prefill = partial(LowBitLlamaDecoderlayer,
 | 
			
		||||
                                           cached_cos=cached_cos,
 | 
			
		||||
                                           cached_sin=cached_sin,
 | 
			
		||||
        self.backend_cls_prefill = partial(LowBitLlamaMultiDecoderlayer,
 | 
			
		||||
                                           num_heads=num_heads,
 | 
			
		||||
                                           num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                                           num_layers=1,
 | 
			
		||||
                                           cached_cos=cached_cos,
 | 
			
		||||
                                           cached_sin=cached_sin,
 | 
			
		||||
                                           input_layernorm_weights=None,
 | 
			
		||||
                                           post_attn_layernorm_weights=None,
 | 
			
		||||
                                           max_seq_len=max_seq_len,
 | 
			
		||||
                                           rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                                           intermediate_size=intermediate_size,
 | 
			
		||||
                                           mode="prefill",
 | 
			
		||||
                                           dtype=np_dtype)
 | 
			
		||||
        self.backend_cls_decode = partial(LowBitLlamaDecoderlayer,
 | 
			
		||||
                                          cached_cos=cached_cos,
 | 
			
		||||
                                          cached_sin=cached_sin,
 | 
			
		||||
                                          num_heads=num_heads,
 | 
			
		||||
                                          num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                                          max_seq_len=max_seq_len,
 | 
			
		||||
                                          rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                                          intermediate_size=intermediate_size,
 | 
			
		||||
                                          mode="decode",
 | 
			
		||||
                                           transpose_value=self.transpose_value,
 | 
			
		||||
                                           dtype=np_dtype)
 | 
			
		||||
        self.layer_norm_0 = layer_norm_0
 | 
			
		||||
        self.layer_norm_1 = layer_norm_1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def forward(self,
 | 
			
		||||
                hidden_states: torch.Tensor,
 | 
			
		||||
                attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -670,42 +626,27 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
 | 
			
		|||
                use_cache: bool = False,
 | 
			
		||||
                cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
                **kwargs,) -> torch.Tensor:
 | 
			
		||||
        """Torch module forward method.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            x (torch.Tensor): Input tensor
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            torch.Tensor: result
 | 
			
		||||
        """
 | 
			
		||||
        assert not output_attentions
 | 
			
		||||
        # assert cache_position is None
 | 
			
		||||
        # assert use_cache
 | 
			
		||||
 | 
			
		||||
        seq_len = hidden_states.shape[1]
 | 
			
		||||
        # cos, sin = self.rotary_emb(hidden_states, position_ids)
 | 
			
		||||
        if seq_len == 1:
 | 
			
		||||
            backend_cls = self.backend_cls_decode
 | 
			
		||||
            past_key = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
            past_value = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
 | 
			
		||||
            new_size = (past_key.size(0),
 | 
			
		||||
                        past_key.size(1),
 | 
			
		||||
                        self.max_seq_len,
 | 
			
		||||
                        past_key.size(3))
 | 
			
		||||
            past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
 | 
			
		||||
            past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
 | 
			
		||||
 | 
			
		||||
            pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
 | 
			
		||||
 | 
			
		||||
            pad_mask = (0, pad_len)
 | 
			
		||||
            padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
 | 
			
		||||
                                    value=torch.finfo(torch.float16).min)
 | 
			
		||||
            padded_attention_mask[:,:,:,-1] = 0.0
 | 
			
		||||
            inputs = (hidden_states.to(torch.float16),
 | 
			
		||||
                      padded_attention_mask,
 | 
			
		||||
                      position_ids,)
 | 
			
		||||
 | 
			
		||||
            inputs += (self.layer_norm_0, self.layer_norm_1)
 | 
			
		||||
 | 
			
		||||
            inputs += (past_key, past_value)
 | 
			
		||||
            hidden_states, new_key, new_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=4)
 | 
			
		||||
            cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
 | 
			
		||||
            key_states, value_states = past_key_value.update(new_key, new_value, self.layer_idx, cache_kwargs)
 | 
			
		||||
        else:
 | 
			
		||||
        backend_cls = self.backend_cls_prefill
 | 
			
		||||
        inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
 | 
			
		||||
        inputs += (self.layer_norm_0, self.layer_norm_1)
 | 
			
		||||
        # print("start run_model prefill")
 | 
			
		||||
        hidden_states, past_key, past_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=1)
 | 
			
		||||
            cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
 | 
			
		||||
        # print("end run model prefill")
 | 
			
		||||
        cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
 | 
			
		||||
        key_states, value_states = past_key_value.update(past_key, past_value, self.layer_idx, cache_kwargs)
 | 
			
		||||
 | 
			
		||||
        outputs = (hidden_states,)
 | 
			
		||||
| 
						 | 
				
			
			@ -722,15 +663,14 @@ if __name__ == "__main__":
 | 
			
		|||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
    parser.add_argument('--max-seq-len', type=int, default=1024)
 | 
			
		||||
    parser.add_argument('--transpose-value-cache', action="store_true", default=False)
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    pipeline = True # default
 | 
			
		||||
    max_seq_len = 1024 # default
 | 
			
		||||
    if pipeline:
 | 
			
		||||
    os.environ['MASTER_ADDR'] = '127.0.0.1'
 | 
			
		||||
    os.environ['MASTER_PORT'] = '29501'
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -739,7 +679,8 @@ if __name__ == "__main__":
 | 
			
		|||
    my_size = dist.get_world_size()
 | 
			
		||||
    logger.info(f"rank: {my_rank}, size: {my_size}")
 | 
			
		||||
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16,
 | 
			
		||||
                                                 trust_remote_code=True, attn_implementation="eager",
 | 
			
		||||
                                                 load_in_low_bit="sym_int4", pipeline_parallel_stages=2)
 | 
			
		||||
 | 
			
		||||
    if my_rank == 0:
 | 
			
		||||
| 
						 | 
				
			
			@ -748,18 +689,10 @@ if __name__ == "__main__":
 | 
			
		|||
 | 
			
		||||
    if my_rank == 1:
 | 
			
		||||
        print(model)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
 | 
			
		||||
                                                     load_in_low_bit="sym_int4")
 | 
			
		||||
 | 
			
		||||
    if pipeline:
 | 
			
		||||
    layer_start = model.layer_start
 | 
			
		||||
    layer_end = model.layer_end
 | 
			
		||||
    num_layers = model.num_layers
 | 
			
		||||
    else:
 | 
			
		||||
        layer_start = 0
 | 
			
		||||
        layer_end = 32
 | 
			
		||||
        num_layers = 32
 | 
			
		||||
    num_heads = model.model.layers[layer_start].self_attn.num_heads
 | 
			
		||||
    num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
 | 
			
		||||
    head_dim = model.model.layers[layer_start].self_attn.head_dim
 | 
			
		||||
| 
						 | 
				
			
			@ -776,12 +709,10 @@ if __name__ == "__main__":
 | 
			
		|||
        mlp_layer = curr_layer.mlp
 | 
			
		||||
 | 
			
		||||
        weights = [
 | 
			
		||||
            # model.model.layers[i].input_layernorm.weight.to(torch.float16),
 | 
			
		||||
            (attn_layer.q_proj.weight, attn_layer.q_proj.scale),
 | 
			
		||||
            (attn_layer.k_proj.weight, attn_layer.k_proj.scale),
 | 
			
		||||
            (attn_layer.v_proj.weight, attn_layer.v_proj.scale),
 | 
			
		||||
            (attn_layer.o_proj.weight, attn_layer.o_proj.scale),
 | 
			
		||||
            # model.model.layers[i].post_attention_layernorm.weight.to(torch.float16),
 | 
			
		||||
            (mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
 | 
			
		||||
            (mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
 | 
			
		||||
            (mlp_layer.down_proj.weight, mlp_layer.down_proj.scale)]
 | 
			
		||||
| 
						 | 
				
			
			@ -797,13 +728,13 @@ if __name__ == "__main__":
 | 
			
		|||
                                            num_key_value_heads=num_key_value_heads,
 | 
			
		||||
                                            cached_cos=cached_cos,
 | 
			
		||||
                                            cached_sin=cached_sin,
 | 
			
		||||
                                            # rotary_emb=model.model.layers[i].self_attn.rotary_emb,
 | 
			
		||||
                                            layer_norm_0=layer_norm_0,
 | 
			
		||||
                                            layer_norm_1=layer_norm_1,
 | 
			
		||||
                                            layer_idx=layer_idx,
 | 
			
		||||
                                            rms_norm_eps=rms_norm_eps,
 | 
			
		||||
                                            intermediate_size=intermediate_size,
 | 
			
		||||
                                            max_seq_len=max_seq_len)
 | 
			
		||||
                                            max_seq_len=args.max_seq_len,
 | 
			
		||||
                                            transpose_value=args.transpose_value_cache)
 | 
			
		||||
        
 | 
			
		||||
        layer_weights.extend(weights)
 | 
			
		||||
        input_layer_norm_weights.append(layer_norm_0)
 | 
			
		||||
| 
						 | 
				
			
			@ -822,7 +753,8 @@ if __name__ == "__main__":
 | 
			
		|||
        num_key_value_heads=num_key_value_heads,
 | 
			
		||||
        rms_norm_eps=rms_norm_eps,
 | 
			
		||||
        intermediate_size=intermediate_size,
 | 
			
		||||
        max_seq_len=max_seq_len,
 | 
			
		||||
        max_seq_len=args.max_seq_len,
 | 
			
		||||
        transpose_value=args.transpose_value_cache
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    model.model.multi_decoder = multi_decoder
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -86,7 +86,7 @@ class _BaseAutoModelClass:
 | 
			
		|||
 | 
			
		||||
        if kwargs.get('torch_dtype', None) not in [None, 'auto', torch.float, torch.float16]:
 | 
			
		||||
            warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used")
 | 
			
		||||
        kwargs['torch_dtype'] = torch.float
 | 
			
		||||
            kwargs['torch_dtype'] = torch.float32
 | 
			
		||||
 | 
			
		||||
        low_bit = kwargs.pop('load_in_low_bit', 'sym_int4')
 | 
			
		||||
        qtype_map = {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -18,9 +18,13 @@
 | 
			
		|||
import torch
 | 
			
		||||
from typing import Optional, Dict, Tuple, Any
 | 
			
		||||
from transformers.cache_utils import DynamicCache
 | 
			
		||||
import sys
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def init_fused_kv_cache(batch_size, num_heads, head_dim, current_length, max_length, dtype, device):
 | 
			
		||||
def init_fused_kv_cache(batch_size, num_heads, head_dim,
 | 
			
		||||
                        current_length, max_length, dtype,
 | 
			
		||||
                        device, tranpose_value=False):
 | 
			
		||||
    if not tranpose_value:
 | 
			
		||||
        key_cache_storage = torch.zeros(batch_size, num_heads,
 | 
			
		||||
                                        max_length, head_dim,
 | 
			
		||||
                                        dtype=dtype, device=device)
 | 
			
		||||
| 
						 | 
				
			
			@ -37,9 +41,27 @@ def init_fused_kv_cache(batch_size, num_heads, head_dim, current_length, max_len
 | 
			
		|||
                                                     value_cache_storage.stride(),
 | 
			
		||||
                                                     storage_offset=0)
 | 
			
		||||
        return key_cache, value_cache
 | 
			
		||||
    else:
 | 
			
		||||
        key_cache_storage = torch.zeros(batch_size, num_heads,
 | 
			
		||||
                                        max_length, head_dim,
 | 
			
		||||
                                        dtype=dtype, device=device)
 | 
			
		||||
        value_cache_storage = torch.zeros(batch_size, num_heads,
 | 
			
		||||
                                          head_dim, max_length,
 | 
			
		||||
                                          dtype=dtype, device=device)
 | 
			
		||||
 | 
			
		||||
        key_cache = key_cache_storage.as_strided((batch_size, num_heads,
 | 
			
		||||
                                                  current_length, head_dim),
 | 
			
		||||
                                                 key_cache_storage.stride(),
 | 
			
		||||
                                                 storage_offset=0)
 | 
			
		||||
        value_cache = value_cache_storage.as_strided((batch_size, num_heads,
 | 
			
		||||
                                                      head_dim, current_length),
 | 
			
		||||
                                                     value_cache_storage.stride(),
 | 
			
		||||
                                                     storage_offset=0)
 | 
			
		||||
        return key_cache, value_cache.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def append_fused_kv_cache(cache_k, cache_v, key_states, value_states):
 | 
			
		||||
def append_fused_kv_cache(cache_k, cache_v, key_states, value_states, transpose_value=False):
 | 
			
		||||
    if not transpose_value:
 | 
			
		||||
        new_size = (cache_k.size(0),
 | 
			
		||||
                    cache_k.size(1),
 | 
			
		||||
                    cache_k.size(2) + key_states.size(2),
 | 
			
		||||
| 
						 | 
				
			
			@ -49,17 +71,35 @@ def append_fused_kv_cache(cache_k, cache_v, key_states, value_states):
 | 
			
		|||
        new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
 | 
			
		||||
        new_cache_v[:, :, cache_v.size(2):cache_v.size(2) + key_states.size(2), :] = value_states
 | 
			
		||||
        return new_cache_k, new_cache_v
 | 
			
		||||
    else:
 | 
			
		||||
        new_size_key = (cache_k.size(0),
 | 
			
		||||
                        cache_k.size(1),
 | 
			
		||||
                        cache_k.size(2) + key_states.size(2),
 | 
			
		||||
                        cache_k.size(3))
 | 
			
		||||
        new_cache_k = cache_k.as_strided(new_size_key, cache_k.stride(), storage_offset=0)
 | 
			
		||||
        new_cache_k[:, :, cache_k.size(2):cache_k.size(2) + key_states.size(2), :] = key_states
 | 
			
		||||
 | 
			
		||||
        new_size_value = (cache_v.size(0),
 | 
			
		||||
                          cache_v.size(1),
 | 
			
		||||
                          cache_v.size(3),
 | 
			
		||||
                          cache_v.size(2) + value_states.size(3),
 | 
			
		||||
                          )
 | 
			
		||||
        raw_cache_v = cache_v.transpose(-1, -2)
 | 
			
		||||
        new_cache_v = raw_cache_v.as_strided(new_size_value, raw_cache_v.stride(), storage_offset=0)
 | 
			
		||||
        start = raw_cache_v.size(3)
 | 
			
		||||
        end = raw_cache_v.size(3) + value_states.size(3)
 | 
			
		||||
        new_cache_v[:, :, :, start:end] = value_states
 | 
			
		||||
        return new_cache_k, new_cache_v.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DynamicFusedNormalCache(DynamicCache):
 | 
			
		||||
    # Experimental support for fused decoderlayer implementation on NPU
 | 
			
		||||
    # Currently only for llama2
 | 
			
		||||
    KV_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
    def __init__(self) -> None:
 | 
			
		||||
        self.key_cache: Dict[int, torch.Tensor] = {}
 | 
			
		||||
        self.value_cache: Dict[int, torch.Tensor] = {}
 | 
			
		||||
        self._seen_tokens = 0  # Used in `generate` to keep how many tokens the cache has seen
 | 
			
		||||
        self.min_layer_idx = sys.maxsize
 | 
			
		||||
 | 
			
		||||
    def update(
 | 
			
		||||
        self,
 | 
			
		||||
| 
						 | 
				
			
			@ -71,28 +111,21 @@ class DynamicFusedNormalCache(DynamicCache):
 | 
			
		|||
 | 
			
		||||
        batch_size, num_heads, seq_len, head_dim = key_states.shape
 | 
			
		||||
 | 
			
		||||
        max_seq_length = cache_kwargs.pop("max_seq_len", None)
 | 
			
		||||
        transpose_value = cache_kwargs.pop("transpose_value", None)
 | 
			
		||||
 | 
			
		||||
        if layer_idx == 0 or layer_idx == 16:
 | 
			
		||||
            if hasattr(self, "_seen_tokens"):
 | 
			
		||||
                # 4.39 uses `_seen_tokens`
 | 
			
		||||
                self._seen_tokens += seq_len
 | 
			
		||||
            else:
 | 
			
		||||
                # 4.37 uses `seen_tokens`
 | 
			
		||||
                self.seen_tokens += seq_len
 | 
			
		||||
        max_seq_length = cache_kwargs["max_seq_len"] if "max_seq_len" in cache_kwargs else None
 | 
			
		||||
        transpose_value = cache_kwargs["transpose"] if "transpose" in cache_kwargs else False
 | 
			
		||||
 | 
			
		||||
        # Update the cache
 | 
			
		||||
        # if len(self.key_cache) <= layer_idx:
 | 
			
		||||
        if layer_idx not in self.key_cache:
 | 
			
		||||
            max_len = max_seq_length if max_seq_length is not None else key_states.size(2) + \
 | 
			
		||||
                self.KV_ALLOC_BLOCK_LENGTH
 | 
			
		||||
            max_len = max_seq_length
 | 
			
		||||
            k_cache, v_cache = init_fused_kv_cache(
 | 
			
		||||
                batch_size, num_heads, head_dim,
 | 
			
		||||
                0, max_len,
 | 
			
		||||
                key_states.dtype, key_states.device,
 | 
			
		||||
                tranpose_value=transpose_value,
 | 
			
		||||
            )
 | 
			
		||||
            k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
 | 
			
		||||
            k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states,
 | 
			
		||||
                                                     transpose_value=transpose_value)
 | 
			
		||||
 | 
			
		||||
            self.key_cache[layer_idx] = k_cache
 | 
			
		||||
            self.value_cache[layer_idx] = v_cache
 | 
			
		||||
| 
						 | 
				
			
			@ -101,7 +134,8 @@ class DynamicFusedNormalCache(DynamicCache):
 | 
			
		|||
            v_cache = self.value_cache[layer_idx]
 | 
			
		||||
 | 
			
		||||
            kv_seq_len = k_cache.size(2) + key_states.size(2)
 | 
			
		||||
            k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
 | 
			
		||||
            k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states,
 | 
			
		||||
                                                     transpose_value=transpose_value)
 | 
			
		||||
            self.key_cache[layer_idx] = k_cache
 | 
			
		||||
            self.value_cache[layer_idx] = v_cache
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -113,3 +147,11 @@ class DynamicFusedNormalCache(DynamicCache):
 | 
			
		|||
 | 
			
		||||
        for idx, layer in self.key_cache.items():
 | 
			
		||||
            return layer.shape[-2]
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def _seen_tokens(self):
 | 
			
		||||
        return self.get_seq_length()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def seen_tokens(self):
 | 
			
		||||
        return self.get_seq_length()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue