follow up on experimental support of fused decoder layer for llama2 (#11785)

* clean up and support transpose value cache

* refine

* fix style

* fix style
This commit is contained in:
Yang Wang 2024-08-13 18:53:55 -07:00 committed by GitHub
parent cb79dcda93
commit 51bcac1229
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 301 additions and 327 deletions

View file

@ -15,7 +15,7 @@
#
import os
os.environ["OMP_NUM_THREADS"] = "4"
os.environ["OMP_NUM_THREADS"] = "8"
os.environ["IPEX_LLM_LAST_LM_HEAD"] = "1"
import torch
import time
@ -40,6 +40,7 @@ from functools import partial
import torch.nn.functional as F
import torch.nn.parallel
import torch.distributed as dist
from filelock import FileLock
from transformers.utils import logging
logger = logging.get_logger(__name__)
@ -116,164 +117,12 @@ def run_model(
return results
class LowBitLlamaDecoderlayer(NNFactory):
def __init__(
self,
hidden_shape: Sequence[int],
attenion_mask_shape=None,
position_id_shape=None,
past_key_shape=None,
past_value_shape=None,
input_layernorm_shape=None,
post_layernorm_shape=None,
*,
num_heads: int,
num_key_value_heads: int,
cached_cos,
cached_sin,
mode: str = "prefill",
dtype: np.dtype = np.int8,
max_seq_len: int = 128,
profile: bool = False,
device: str = "NPU",
rms_norm_eps,
intermediate_size,
**additional_args
):
super().__init__(profile, device)
self.max_seq_len = max_seq_len
self.intermediate_size = intermediate_size
eps = self.constant(rms_norm_eps)
self.batch_size, self.seq_len, self.hidden_size = hidden_shape
if mode == "decode":
invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
self.num_heads = num_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = self.hidden_size // self.num_heads
# define input, the order self.parameter matters
input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
# Self Attention
if mode == "decode":
attention_mask = self.parameter((self.batch_size, 1, 1, self.max_seq_len + 1))
else:
attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
position_ids = self.parameter((self.batch_size, self.seq_len))
input_layernorm_weight = self.parameter((1, self.hidden_size,))
post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
if mode == "decode":
past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
residual = input
input_2d = self.reshape(input, (self.batch_size * self.seq_len, self.hidden_size))
# input_layernorm forward
input_2d = self.convert_to_fp32(input_2d)
variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
input_2d = self.convert_to_fp16(input_2d)
query_states = self.linear(input_2d, self.num_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=dtype)
cos = self.constant(cached_cos)
cos = self.unsqueeze(cos, axis=0)
sin = self.constant(cached_sin)
sin = self.unsqueeze(sin, axis=0)
query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
query_states = self.transpose(query_states, [0, 2, 1, 3])
key_states = self.transpose(key_states, [0, 2, 1, 3])
value_states = self.transpose(value_states, [0, 2, 1, 3])
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
new_key_states = key_states
new_value_states = value_states
invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
if mode == "decode":
key_states = self.concat(past_key, key_states, axis=-2)
value_states = self.concat(past_value, value_states, axis=-2)
attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
attn_weight = self.eltwise_add(attn_weight, attention_mask)
attn_weight = self.convert_to_fp32(attn_weight)
attn_weight = self.softmax(attn_weight, -1)
attn_weight = self.convert_to_fp16(attn_weight)
attn_output = self.matmul(attn_weight, value_states, False, False)
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
attn_output = self.linear(attn_output, self.hidden_size, self.hidden_size, bias=False, wt_dtype=dtype)
hidden_states = self.eltwise_add(residual, attn_output)
# Fully Connected
residual = hidden_states
hidden_states = self.convert_to_fp32(hidden_states)
variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
# mlp
mm1 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
bias=False, wt_dtype=dtype)
mm2 = self.linear(hidden_states, self.intermediate_size, self.hidden_size,
bias=False, wt_dtype=dtype) # type: ignore[attr-defined]
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
hidden_states = self.linear(mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=dtype)
hidden_states = self.eltwise_add(residual, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
# hacking to add key, value to outputs
new_key_states = self.convert_to_fp16(new_key_states)
new_value_states = self.convert_to_fp16(new_value_states)
self.compile()
def rotate_half(self, x):
x1 = self.slice(x, [0, 0, 0, 0], [self.batch_size, self.num_heads, self.seq_len, self.head_dim//2], )
x2 = self.slice(x, [0, 0, 0, self.head_dim//2], [self.batch_size, self.num_heads, self.seq_len, self.head_dim])
return self.concat(self.negative(x2), x1, axis=-1)
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
position_ids = self.squeeze(position_ids)
cos = self.gather(cos, self.convert_to_int32(position_ids), self.constant(1), 0)
sin = self.gather(sin, self.convert_to_int32(position_ids), self.constant(1), 0)
cos = self.unsqueeze(cos, [1])
sin = self.unsqueeze(sin, [1])
q_embed = self.eltwise_add(self.eltwise_mul(q, cos), self.eltwise_mul(self.rotate_half(q), sin))
k_embed = self.eltwise_add(self.eltwise_mul(k, cos), self.eltwise_mul(self.rotate_half(k), sin))
return q_embed, k_embed
class LowBitLlamaMultiDecoderlayer(NNFactory):
def __init__(
self,
# batch_size: int,
# seq_len: int,
# hidden_size: int,
hidden_shape: Sequence[int],
*shapes,
num_heads: int,
@ -281,16 +130,16 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
num_layers: int,
cached_cos,
cached_sin,
input_layernorm_weights,
post_attn_layernorm_weights,
input_layernorm_weights=None,
post_attn_layernorm_weights=None,
mode: str = "prefill",
dtype: np.dtype = np.int8,
max_seq_len: int = 128,
max_seq_len: int = 1024,
transpose_value: bool = False,
profile: bool = False,
device: str = "NPU",
rms_norm_eps,
intermediate_size,
**additional_args
):
super().__init__(profile, device)
self.max_seq_len = max_seq_len
@ -301,6 +150,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
self.batch_size, self.seq_len, self.hidden_size = hidden_shape
self.mode = mode
self.rms_norm_eps = rms_norm_eps
self.transpose_value = transpose_value
cos = self.constant(self.cached_cos)
self.cos = self.unsqueeze(cos, axis=0)
@ -309,11 +159,16 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
self.sin = self.unsqueeze(sin, axis=0)
if mode == "decode":
invalidInputError(self.seq_len == 1, "seq_len must be 1 for decode mode")
assert self.seq_len == 1, "seq_len must be 1 for decode mode"
self.kv_seq_len = self.max_seq_len + 1
else:
self.kv_seq_len = self.seq_len
self.num_heads = num_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# define input, the order self.parameter matters
input = self.parameter((self.batch_size, self.seq_len, self.hidden_size))
@ -324,21 +179,34 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
else:
attention_mask = self.parameter((self.batch_size, 1, self.seq_len, self.seq_len))
position_ids = self.parameter((self.batch_size, self.seq_len))
past_keys = []
past_values = []
if mode == "decode":
for i in range(num_layers):
past_key = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
if transpose_value:
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len))
else:
past_value = self.parameter((self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim))
past_keys.append(past_key)
past_values.append(past_value)
else:
past_key = None
past_value = None
past_keys = [None] * num_layers
past_values = [None] * num_layers
if input_layernorm_weights is None:
assert post_attn_layernorm_weights is None
input_layernorm_weights = []
post_attn_layernorm_weights = []
for i in range(num_layers):
input_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
post_attn_layernorm_weights.append(self.parameter((1, self.hidden_size,)))
else:
input_layernorm_weights = [self.constant(w) for w in input_layernorm_weights]
post_attn_layernorm_weights = [self.constant(w) for w in post_attn_layernorm_weights]
# input_layernorm_weight = self.parameter((1, self.hidden_size,))
# post_attention_layernorm_weight = self.parameter((1, self.hidden_size,))
hidden_states = input
curr_key_values = []
@ -352,6 +220,7 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
past_value=past_values[i],)
curr_key_values.append((new_key_states, new_value_states))
# define outputs
hidden_states = self.convert_to_fp16(hidden_states)
@ -359,8 +228,23 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
new_key_states = self.convert_to_fp16(curr_key_values[i][0])
new_value_states = self.convert_to_fp16(curr_key_values[i][1])
with FileLock("decoder_compile.lock"):
print("start compiling")
self.compile()
def repeat_kv(self, hidden_states, n_rep, transpose=False):
if n_rep == 1:
return hidden_states
if not transpose:
hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.kv_seq_len, self.head_dim])
hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.kv_seq_len, self.head_dim])
hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.kv_seq_len, self.head_dim])
else:
hidden_states = self.reshape(hidden_states, [self.batch_size, self.num_key_value_heads, 1, self.head_dim, self.kv_seq_len])
hidden_states = self.broadcast(hidden_states, [self.batch_size, self.num_key_value_heads, n_rep, self.head_dim, self.kv_seq_len])
hidden_states = self.reshape(hidden_states, [self.batch_size, n_rep*self.num_key_value_heads, self.head_dim, self.kv_seq_len])
return hidden_states
def build_decoder(self, hidden_states, attention_mask, position_ids,
input_layernorm_weight, post_attention_layernorm_weight,
past_key = None,
@ -372,10 +256,11 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
# input layernorm
input_2d = self.convert_to_fp32(input_2d)
# variance = self.reduce_mean(self.eltwise_mul(input_2d, input_2d), -1, keep_dims=True)
variance = self.reduce_mean(self.power(input_2d, self.constant(np.array([[2]], dtype=np.float32))), -1, keep_dims=True)
eps = self.constant(self.rms_norm_eps)
input_2d = self.eltwise_div(input_2d, self.sqrt(self.eltwise_add(variance, eps)))
input_layernorm_weight = self.constant(input_layernorm_weight)
# input_layernorm_weight = self.constant(input_layernorm_weight)
input_layernorm_weight = self.convert_to_fp32(input_layernorm_weight)
input_2d = self.eltwise_mul(input_layernorm_weight, input_2d)
input_2d = self.convert_to_fp16(input_2d)
@ -385,33 +270,47 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
key_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
value_states = self.linear(input_2d, self.num_key_value_heads*self.head_dim, self.hidden_size, bias=False, wt_dtype=self.dtype)
# cos = self.constant(self.cached_cos)
# cos = self.unsqueeze(cos, axis=0)
# sin = self.constant(self.cached_sin)
# sin = self.unsqueeze(sin, axis=0)
query_states = self.reshape(query_states, [self.batch_size, self.seq_len, self.num_heads, self.head_dim])
key_states = self.reshape(key_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
value_states = self.reshape(value_states, [self.batch_size, self.seq_len, self.num_key_value_heads, self.head_dim])
query_states = self.transpose(query_states, [0, 2, 1, 3])
key_states = self.transpose(key_states, [0, 2, 1, 3])
if self.transpose_value:
value_states = self.transpose(value_states, [0, 2, 3, 1])
else:
value_states = self.transpose(value_states, [0, 2, 1, 3])
query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, self.cos, self.sin, position_ids)
new_key_states = key_states
new_value_states = value_states
# repeat_kv cannot be implemented because Broadcast op is needed
# key_states = repeat_kv(key_states, self.num_key_value_groups)
# value_states = repeat_kv(value_states, self.num_key_value_groups)
invalidInputError(self.num_heads == self.num_key_value_heads, "num_heads must be equal to num_key_value_heads")
if self.mode == "decode":
key_states = self.concat(past_key, key_states, axis=-2)
if self.transpose_value:
value_states = self.concat(past_value, value_states, axis=-1)
else:
value_states = self.concat(past_value, value_states, axis=-2)
# repeat_kv cannot be implemented because Broadcast op is needed
key_states = self.repeat_kv(key_states, self.num_key_value_groups)
value_states = self.repeat_kv(value_states, self.num_key_value_groups, self.transpose_value)
attn_weight = self.matmul(query_states, key_states, False, True) / (math.sqrt(self.head_dim))
attn_weight = self.eltwise_add(attn_weight, attention_mask)
attn_weight = self.convert_to_fp32(attn_weight)
attn_weight = self.softmax(attn_weight, -1)
attn_weight = self.convert_to_fp16(attn_weight)
attn_output = self.matmul(attn_weight, value_states, False, False)
attn_output = self.matmul(attn_weight, value_states, False, self.transpose_value)
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
attn_output = self.reshape(attn_output, [self.batch_size, self.seq_len, self.hidden_size])
@ -422,10 +321,12 @@ class LowBitLlamaMultiDecoderlayer(NNFactory):
# Fully Connected
residual = hidden_states
# post_attention_layernorm forward
hidden_states = self.convert_to_fp32(hidden_states)
variance = self.reduce_mean(self.power(hidden_states, self.constant(np.array([[[2]]], dtype=np.float32))), -1, keep_dims=True)
hidden_states = self.eltwise_div(hidden_states, self.sqrt(self.eltwise_add(variance, eps)))
post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
# post_attention_layernorm_weight = self.constant(post_attention_layernorm_weight)
post_attention_layernorm_weight = self.convert_to_fp32(post_attention_layernorm_weight)
hidden_states = self.eltwise_mul(post_attention_layernorm_weight, hidden_states)
hidden_states = self.convert_to_fp16(hidden_states)
@ -472,12 +373,17 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
layer_indexes : List[int],
cached_cos,
cached_sin,
# rotary_emb,
# batch_size: int,
# seq_len: int,
# hidden_size: int,
num_heads: int,
head_dim: int,
num_key_value_heads: int,
rms_norm_eps,
intermediate_size,
max_seq_len: int = 128,
max_seq_len: int = 1024,
transpose_value: bool = False,
):
super().__init__()
@ -491,38 +397,74 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
self.op_id = str(uuid.uuid4())
# self.layer_idx = layer_idx
self.max_seq_len = max_seq_len
self.transpose_value = transpose_value
# self.rotary_emb = rotary_emb
if isinstance(parameters[0], tuple): # weight, scale from QuantizedLinear
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
assert np_dtype == np.uint8
assert parameters[0][1].dtype == torch.float16, parameters[0]
else: # FP16 Linear
invalidInputError(False, "Please use int4 optimization")
assert False, "should not be here"
np_dtype = np.float16
self.layer_indexes = layer_indexes
self.num_layers_1 = len(self.layer_indexes) // 2
self.num_layers_0 = len(self.layer_indexes) - self.num_layers_1
assert self.num_layers_1 + self.num_layers_0 == len(input_laynorm_weights)
assert self.num_layers_1 + self.num_layers_0 == len(post_attn_layernorm_weights)
print("create dedcoder layer")
self.backend_cls_decode = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
input_layernorm_weights=input_laynorm_weights,
post_attn_layernorm_weights=post_attn_layernorm_weights,
self.backend_cls_decode_0 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
input_layernorm_weights=input_laynorm_weights[:self.num_layers_0],
post_attn_layernorm_weights=post_attn_layernorm_weights[:self.num_layers_0],
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
num_layers=len(layer_indexes),
num_layers=self.num_layers_0,
max_seq_len=max_seq_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
mode="decode",
transpose_value=self.transpose_value,
dtype=np_dtype)
self.backend_cls_decode_1 = LowBitLlamaMultiDecoderlayer([1, 1, num_heads*head_dim],
input_layernorm_weights=input_laynorm_weights[self.num_layers_0:],
post_attn_layernorm_weights=post_attn_layernorm_weights[self.num_layers_0:],
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
num_layers=self.num_layers_1,
max_seq_len=max_seq_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
mode="decode",
transpose_value=self.transpose_value,
dtype=np_dtype)
print("created dedcoder layer")
self.backend_cls_decode.setWeights(3+len(layer_indexes)*2, self.op_id, *op_parameters)
print("weight setted")
backend_lib.run(self.backend_cls_decode._mm,)
assert (self.num_layers_0 + self.num_layers_1) * 7 == len(op_parameters)
self.backend_cls_decode_0.setWeights(3+self.num_layers_0*2, self.op_id, *op_parameters[:self.num_layers_0*7])
backend_lib.run(self.backend_cls_decode_0._mm)
print("first inference done")
self.kv_cache_c_parameter_handel = None
self.backend_cls_decode_1.setWeights(3+self.num_layers_1*2, self.op_id, *op_parameters[self.num_layers_0*7:])
print("weight setted")
backend_lib.run(self.backend_cls_decode_1._mm)
print("2nd inference done")
self.kv_cache_c_parameter_handel = (None, None)
self.kv_cache_parameters = None
self.kv_cache_prefetched = False
def forward(self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
@ -541,8 +483,6 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
torch.Tensor: result
"""
seq_len = hidden_states.shape[1]
backend_cls = self.backend_cls_decode
pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
pad_mask = (0, pad_len)
@ -551,7 +491,8 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
padded_attention_mask[:,:,:,-1] = 0.0
inputs = (hidden_states.to(torch.float16),
padded_attention_mask,
position_ids,)
position_ids,
)
if self.kv_cache_parameters is None:
self.kv_cache_parameters = []
@ -562,56 +503,76 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
cached_prt = self.kv_cache_parameters[0].storage().data_ptr()
current_ptr = past_key_value.key_cache[self.layer_indexes[0]].storage().data_ptr()
if cached_prt != current_ptr:
# print("kv cache changed")
self.kv_cache_parameters = []
self.kv_cache_c_parameter_handel = None
self.kv_cache_c_parameter_handel = (None, None)
self.kv_cache_prefetched = False
if len(self.kv_cache_parameters) == 0:
for idx in self.layer_indexes:
past_key = past_key_value.key_cache[idx]
past_value = past_key_value.value_cache[idx]
assert past_key.dtype == torch.float16, f"past_key dtype is {past_key.dtype}"
new_size = (past_key.size(0),
past_key.size(1),
self.max_seq_len,
past_key.size(3))
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
assert past_key.is_contiguous()
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
if self.transpose_value:
past_value = past_value.transpose(-1, -2)
assert past_value.is_contiguous()
self.kv_cache_parameters.append(past_key)
self.kv_cache_parameters.append(past_value)
self.kv_cache_c_parameter_handel = self.backend_cls_decode.create_parameters([p.numpy() for p in self.kv_cache_parameters])
handle_0 = self.backend_cls_decode_0.create_parameters([p.numpy() for p in self.kv_cache_parameters[:self.num_layers_0*2]])
handle_1 = self.backend_cls_decode_1.create_parameters([p.numpy() for p in self.kv_cache_parameters[self.num_layers_0*2:]])
assert len(self.kv_cache_parameters) == (self.num_layers_0 + self.num_layers_1) * 2
self.kv_cache_c_parameter_handel = (handle_0, handle_1)
x_np = [elem.to(torch.float16).numpy() for elem in inputs]
key_value_states = []
with record_function(f"npu_factory"):
if not self.kv_cache_prefetched:
self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
for idx, elem in enumerate(x_np):
self.backend_cls_decode.set_input_tensor(elem, idx)
models_ptr = (ctypes.POINTER(ctypes.c_char) * 2)(self.backend_cls_decode_0._mm, self.backend_cls_decode_1._mm)
inputs_ptr = (ctypes.c_void_p * 3)(x_np[0].ctypes.data_as(ctypes.c_void_p), x_np[1].ctypes.data_as(ctypes.c_void_p), x_np[2].ctypes.data_as(ctypes.c_void_p))
backend_lib.run(self.backend_cls_decode._mm,)
ret = self.backend_cls_decode.out
results = [adapt_output_tensor(r, r.shape, torch.float16) for r in ret]
backend_lib.run_decoders(models_ptr, inputs_ptr, 2, 3)
hidden_states = results[0]
key_value_states = results[1:]
for i in range(1, len(self.backend_cls_decode_0.torch_out)):
key_value_states.append(self.backend_cls_decode_0.torch_out[i])
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
for i in range(1, len(self.backend_cls_decode_1.torch_out)):
key_value_states.append(self.backend_cls_decode_1.torch_out[i])
hidden_states = self.backend_cls_decode_1.torch_out[0]
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
for i in range(len(self.layer_indexes)):
key_states, value_states = past_key_value.update(key_value_states[2*i],
key_value_states[2*i+1],
self.layer_indexes[i], cache_kwargs)
self.backend_cls_decode.load_wt_fn(len(inputs), self.backend_cls_decode._mm, self.kv_cache_c_parameter_handel)
self.backend_cls_decode_0.load_wt_fn(len(inputs), self.backend_cls_decode_0._mm, self.kv_cache_c_parameter_handel[0])
self.backend_cls_decode_1.load_wt_fn(len(inputs), self.backend_cls_decode_1._mm, self.kv_cache_c_parameter_handel[1])
self.kv_cache_prefetched = True
outputs = (hidden_states,)
outputs += (past_key_value,)
return outputs
class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
"""LLAMA MLP operation NPU backend."""
def __init__(
self,
parameters: List[torch.Tensor],
@ -625,42 +586,37 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
rms_norm_eps,
intermediate_size,
max_seq_len: int = 128,
transpose_value: bool = False,
):
super().__init__()
self.op_parameters = parameters
self.op_id = str(uuid.uuid4())
self.layer_idx = layer_idx
self.max_seq_len = max_seq_len
self.transpose_value = transpose_value
# self.rotary_emb = rotary_emb
if isinstance(parameters[0], tuple): # weight, scale from QuantizedLinear
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
np_dtype = np.float16
self.backend_cls_prefill = partial(LowBitLlamaDecoderlayer,
cached_cos=cached_cos,
cached_sin=cached_sin,
self.backend_cls_prefill = partial(LowBitLlamaMultiDecoderlayer,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
num_layers=1,
cached_cos=cached_cos,
cached_sin=cached_sin,
input_layernorm_weights=None,
post_attn_layernorm_weights=None,
max_seq_len=max_seq_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
mode="prefill",
dtype=np_dtype)
self.backend_cls_decode = partial(LowBitLlamaDecoderlayer,
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
max_seq_len=max_seq_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
mode="decode",
transpose_value=self.transpose_value,
dtype=np_dtype)
self.layer_norm_0 = layer_norm_0
self.layer_norm_1 = layer_norm_1
def forward(self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
@ -670,42 +626,27 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,) -> torch.Tensor:
"""Torch module forward method.
Args:
x (torch.Tensor): Input tensor
Returns:
torch.Tensor: result
"""
assert not output_attentions
# assert cache_position is None
# assert use_cache
seq_len = hidden_states.shape[1]
# cos, sin = self.rotary_emb(hidden_states, position_ids)
if seq_len == 1:
backend_cls = self.backend_cls_decode
past_key = past_key_value.key_cache[self.layer_idx]
past_value = past_key_value.value_cache[self.layer_idx]
new_size = (past_key.size(0),
past_key.size(1),
self.max_seq_len,
past_key.size(3))
past_key = past_key.as_strided(new_size, past_key.stride(), storage_offset=0)
past_value = past_value.as_strided(new_size, past_value.stride(), storage_offset=0)
pad_len = self.max_seq_len + 1 - attention_mask.size(-1)
pad_mask = (0, pad_len)
padded_attention_mask = F.pad(attention_mask.to(torch.float16), pad_mask,
value=torch.finfo(torch.float16).min)
padded_attention_mask[:,:,:,-1] = 0.0
inputs = (hidden_states.to(torch.float16),
padded_attention_mask,
position_ids,)
inputs += (self.layer_norm_0, self.layer_norm_1)
inputs += (past_key, past_value)
hidden_states, new_key, new_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=4)
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
key_states, value_states = past_key_value.update(new_key, new_value, self.layer_idx, cache_kwargs)
else:
backend_cls = self.backend_cls_prefill
inputs = (hidden_states.to(torch.float16), attention_mask, position_ids)
inputs += (self.layer_norm_0, self.layer_norm_1)
# print("start run_model prefill")
hidden_states, past_key, past_value = run_model(inputs, self.op_parameters, backend_cls, self.op_id, replica=1)
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len}
# print("end run model prefill")
cache_kwargs = {"cache_position": cache_position, "max_seq_len":self.max_seq_len, "transpose": self.transpose_value}
key_states, value_states = past_key_value.update(past_key, past_value, self.layer_idx, cache_kwargs)
outputs = (hidden_states,)
@ -722,15 +663,14 @@ if __name__ == "__main__":
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--max-seq-len', type=int, default=1024)
parser.add_argument('--transpose-value-cache', action="store_true", default=False)
args = parser.parse_args()
model_path = args.repo_id_or_model_path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
pipeline = True # default
max_seq_len = 1024 # default
if pipeline:
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29501'
@ -739,7 +679,8 @@ if __name__ == "__main__":
my_size = dist.get_world_size()
logger.info(f"rank: {my_rank}, size: {my_size}")
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16,
trust_remote_code=True, attn_implementation="eager",
load_in_low_bit="sym_int4", pipeline_parallel_stages=2)
if my_rank == 0:
@ -748,18 +689,10 @@ if __name__ == "__main__":
if my_rank == 1:
print(model)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, attn_implementation="eager",
load_in_low_bit="sym_int4")
if pipeline:
layer_start = model.layer_start
layer_end = model.layer_end
num_layers = model.num_layers
else:
layer_start = 0
layer_end = 32
num_layers = 32
num_heads = model.model.layers[layer_start].self_attn.num_heads
num_key_value_heads = model.model.layers[layer_start].self_attn.num_key_value_heads
head_dim = model.model.layers[layer_start].self_attn.head_dim
@ -776,12 +709,10 @@ if __name__ == "__main__":
mlp_layer = curr_layer.mlp
weights = [
# model.model.layers[i].input_layernorm.weight.to(torch.float16),
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
# model.model.layers[i].post_attention_layernorm.weight.to(torch.float16),
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale)]
@ -797,13 +728,13 @@ if __name__ == "__main__":
num_key_value_heads=num_key_value_heads,
cached_cos=cached_cos,
cached_sin=cached_sin,
# rotary_emb=model.model.layers[i].self_attn.rotary_emb,
layer_norm_0=layer_norm_0,
layer_norm_1=layer_norm_1,
layer_idx=layer_idx,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
max_seq_len=max_seq_len)
max_seq_len=args.max_seq_len,
transpose_value=args.transpose_value_cache)
layer_weights.extend(weights)
input_layer_norm_weights.append(layer_norm_0)
@ -822,7 +753,8 @@ if __name__ == "__main__":
num_key_value_heads=num_key_value_heads,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
max_seq_len=max_seq_len,
max_seq_len=args.max_seq_len,
transpose_value=args.transpose_value_cache
)
model.model.multi_decoder = multi_decoder

View file

@ -86,7 +86,7 @@ class _BaseAutoModelClass:
if kwargs.get('torch_dtype', None) not in [None, 'auto', torch.float, torch.float16]:
warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used")
kwargs['torch_dtype'] = torch.float
kwargs['torch_dtype'] = torch.float32
low_bit = kwargs.pop('load_in_low_bit', 'sym_int4')
qtype_map = {

View file

@ -18,9 +18,13 @@
import torch
from typing import Optional, Dict, Tuple, Any
from transformers.cache_utils import DynamicCache
import sys
def init_fused_kv_cache(batch_size, num_heads, head_dim, current_length, max_length, dtype, device):
def init_fused_kv_cache(batch_size, num_heads, head_dim,
current_length, max_length, dtype,
device, tranpose_value=False):
if not tranpose_value:
key_cache_storage = torch.zeros(batch_size, num_heads,
max_length, head_dim,
dtype=dtype, device=device)
@ -37,9 +41,27 @@ def init_fused_kv_cache(batch_size, num_heads, head_dim, current_length, max_len
value_cache_storage.stride(),
storage_offset=0)
return key_cache, value_cache
else:
key_cache_storage = torch.zeros(batch_size, num_heads,
max_length, head_dim,
dtype=dtype, device=device)
value_cache_storage = torch.zeros(batch_size, num_heads,
head_dim, max_length,
dtype=dtype, device=device)
key_cache = key_cache_storage.as_strided((batch_size, num_heads,
current_length, head_dim),
key_cache_storage.stride(),
storage_offset=0)
value_cache = value_cache_storage.as_strided((batch_size, num_heads,
head_dim, current_length),
value_cache_storage.stride(),
storage_offset=0)
return key_cache, value_cache.transpose(-1, -2)
def append_fused_kv_cache(cache_k, cache_v, key_states, value_states):
def append_fused_kv_cache(cache_k, cache_v, key_states, value_states, transpose_value=False):
if not transpose_value:
new_size = (cache_k.size(0),
cache_k.size(1),
cache_k.size(2) + key_states.size(2),
@ -49,17 +71,35 @@ def append_fused_kv_cache(cache_k, cache_v, key_states, value_states):
new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
new_cache_v[:, :, cache_v.size(2):cache_v.size(2) + key_states.size(2), :] = value_states
return new_cache_k, new_cache_v
else:
new_size_key = (cache_k.size(0),
cache_k.size(1),
cache_k.size(2) + key_states.size(2),
cache_k.size(3))
new_cache_k = cache_k.as_strided(new_size_key, cache_k.stride(), storage_offset=0)
new_cache_k[:, :, cache_k.size(2):cache_k.size(2) + key_states.size(2), :] = key_states
new_size_value = (cache_v.size(0),
cache_v.size(1),
cache_v.size(3),
cache_v.size(2) + value_states.size(3),
)
raw_cache_v = cache_v.transpose(-1, -2)
new_cache_v = raw_cache_v.as_strided(new_size_value, raw_cache_v.stride(), storage_offset=0)
start = raw_cache_v.size(3)
end = raw_cache_v.size(3) + value_states.size(3)
new_cache_v[:, :, :, start:end] = value_states
return new_cache_k, new_cache_v.transpose(-1, -2)
class DynamicFusedNormalCache(DynamicCache):
# Experimental support for fused decoderlayer implementation on NPU
# Currently only for llama2
KV_ALLOC_BLOCK_LENGTH = 256
def __init__(self) -> None:
self.key_cache: Dict[int, torch.Tensor] = {}
self.value_cache: Dict[int, torch.Tensor] = {}
self._seen_tokens = 0 # Used in `generate` to keep how many tokens the cache has seen
self.min_layer_idx = sys.maxsize
def update(
self,
@ -71,28 +111,21 @@ class DynamicFusedNormalCache(DynamicCache):
batch_size, num_heads, seq_len, head_dim = key_states.shape
max_seq_length = cache_kwargs.pop("max_seq_len", None)
transpose_value = cache_kwargs.pop("transpose_value", None)
if layer_idx == 0 or layer_idx == 16:
if hasattr(self, "_seen_tokens"):
# 4.39 uses `_seen_tokens`
self._seen_tokens += seq_len
else:
# 4.37 uses `seen_tokens`
self.seen_tokens += seq_len
max_seq_length = cache_kwargs["max_seq_len"] if "max_seq_len" in cache_kwargs else None
transpose_value = cache_kwargs["transpose"] if "transpose" in cache_kwargs else False
# Update the cache
# if len(self.key_cache) <= layer_idx:
if layer_idx not in self.key_cache:
max_len = max_seq_length if max_seq_length is not None else key_states.size(2) + \
self.KV_ALLOC_BLOCK_LENGTH
max_len = max_seq_length
k_cache, v_cache = init_fused_kv_cache(
batch_size, num_heads, head_dim,
0, max_len,
key_states.dtype, key_states.device,
tranpose_value=transpose_value,
)
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states,
transpose_value=transpose_value)
self.key_cache[layer_idx] = k_cache
self.value_cache[layer_idx] = v_cache
@ -101,7 +134,8 @@ class DynamicFusedNormalCache(DynamicCache):
v_cache = self.value_cache[layer_idx]
kv_seq_len = k_cache.size(2) + key_states.size(2)
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states)
k_cache, v_cache = append_fused_kv_cache(k_cache, v_cache, key_states, value_states,
transpose_value=transpose_value)
self.key_cache[layer_idx] = k_cache
self.value_cache[layer_idx] = v_cache
@ -113,3 +147,11 @@ class DynamicFusedNormalCache(DynamicCache):
for idx, layer in self.key_cache.items():
return layer.shape[-2]
@property
def _seen_tokens(self):
return self.get_seq_length()
@property
def seen_tokens(self):
return self.get_seq_length()