LLM: add fuse rope and norm optimization for Baichuan. (#9166)
* add fuse rope optimization. * add rms norm optimization.
This commit is contained in:
		
							parent
							
								
									db7f938fdc
								
							
						
					
					
						commit
						51a133de56
					
				
					 3 changed files with 26 additions and 6 deletions
				
			
		| 
						 | 
				
			
			@ -275,6 +275,9 @@ def optimize(model):
 | 
			
		|||
                            module.BaichuanAttention,
 | 
			
		||||
                            baichuan_attention_forward_13b
 | 
			
		||||
                            )
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.RMSNorm,
 | 
			
		||||
                        llama_rms_norm_forward)
 | 
			
		||||
 | 
			
		||||
    elif model.config.model_type == "baichuan":
 | 
			
		||||
        # baichuan1
 | 
			
		||||
| 
						 | 
				
			
			@ -296,6 +299,9 @@ def optimize(model):
 | 
			
		|||
                            module.BaichuanAttention,
 | 
			
		||||
                            baichuan_attention_forward_13b
 | 
			
		||||
                            )
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.RMSNorm,
 | 
			
		||||
                        llama_rms_norm_forward)
 | 
			
		||||
 | 
			
		||||
    elif model.config.model_type == "gpt_neox":
 | 
			
		||||
        from bigdl.llm.transformers.models.gptneox import gptneox_attention_forward
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -28,6 +28,7 @@ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
 | 
			
		|||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -56,9 +57,15 @@ def baichuan_attention_forward_7b(
 | 
			
		|||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value[0].shape[-2]
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                    cos, sin, position_ids, "baichuan")
 | 
			
		||||
    if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
			
		||||
                                                                     key_states,
 | 
			
		||||
                                                                     position_ids,
 | 
			
		||||
                                                                     "baichuan")
 | 
			
		||||
    else:
 | 
			
		||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                        cos, sin, position_ids, "baichuan")
 | 
			
		||||
    # [bsz, nh, t, hd]
 | 
			
		||||
 | 
			
		||||
    # if past_key_value is not None:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -28,6 +28,7 @@ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
 | 
			
		|||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
 | 
			
		||||
from transformers.utils import logging, ContextManagers
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -68,9 +69,15 @@ def baichuan_attention_forward_7b(
 | 
			
		|||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        kv_seq_len += past_key_value[0].shape[-2]
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                    cos, sin, position_ids, "baichuan")
 | 
			
		||||
    if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
			
		||||
                                                                     key_states,
 | 
			
		||||
                                                                     position_ids,
 | 
			
		||||
                                                                     "baichuan")
 | 
			
		||||
    else:
 | 
			
		||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                        cos, sin, position_ids, "baichuan")
 | 
			
		||||
    # [bsz, nh, t, hd]
 | 
			
		||||
 | 
			
		||||
    # if past_key_value is not None:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue