LLM: First commit of StarCoder pybinding (#8354)

* first commit of starcoder

* update setup.py and fix style

* add starcoder_cpp, fix style

* fix style

* support windows binary

* update pybinding

* fix style, add avx2 binary

* small fix

* fix style
This commit is contained in:
Ruonan Wang 2023-06-21 13:23:06 +08:00 committed by GitHub
parent a7d66b7342
commit 50af0251e4
4 changed files with 707 additions and 2 deletions

View file

@ -66,12 +66,15 @@ def obtain_lib_urls():
base_url = "https://sourceforge.net/projects/analytics-zoo/files/bigdl-llm/" base_url = "https://sourceforge.net/projects/analytics-zoo/files/bigdl-llm/"
windows_binarys = ["llama.dll", "gptneox.dll", "bloom.dll", windows_binarys = ["llama.dll", "gptneox.dll", "bloom.dll",
"quantize-llama.exe", "quantize-gptneox.exe", "quantize-bloom.exe", "quantize-llama.exe", "quantize-gptneox.exe", "quantize-bloom.exe",
"main-llama.exe", "main-gptneox.exe", "main-bloom.exe"] "main-llama.exe", "main-gptneox.exe", "main-bloom.exe",
"starcoder.dll", "quantize-starcoder.exe", "main-starcoder.exe"]
linux_binarys = ["libllama_avx2.so", "libgptneox_avx2.so", "libbloom_avx2.so", linux_binarys = ["libllama_avx2.so", "libgptneox_avx2.so", "libbloom_avx2.so",
"libllama_avx512.so", "libgptneox_avx512.so", "libbloom_avx512.so", "libllama_avx512.so", "libgptneox_avx512.so", "libbloom_avx512.so",
"quantize-llama", "quantize-gptneox", "quantize-bloom", "quantize-llama", "quantize-gptneox", "quantize-bloom",
"main-llama_avx2", "main-gptneox_avx2", "main-bloom_avx2", "main-llama_avx2", "main-gptneox_avx2", "main-bloom_avx2",
"main-llama_avx512", "main-gptneox_avx512", "main-bloom_avx512"] "main-llama_avx512", "main-gptneox_avx512", "main-bloom_avx512",
"libstarcoder_avx512.so", "main-starcoder_avx512", "quantize-starcoder",
"libstarcoder_avx2.so", "main-starcoder_avx2"]
def get_date_urls(base_url): def get_date_urls(base_url):
# obtain all urls based on date(format: xxxx-xx-xx) # obtain all urls based on date(format: xxxx-xx-xx)
@ -142,6 +145,9 @@ def setup_package():
"libs/main-bloom.exe", "libs/main-bloom.exe",
"libs/main-gptneox.exe", "libs/main-gptneox.exe",
"libs/main-llama.exe", "libs/main-llama.exe",
"libs/main-starcoder.exe",
"libs/starcoder.dll",
"libs/quantize-starcoder.exe",
] ]
package_data["Linux"] = [ package_data["Linux"] = [
"libs/libllama_avx2.so", "libs/libllama_avx2.so",
@ -153,12 +159,17 @@ def setup_package():
"libs/libbloom_avx2.so", "libs/libbloom_avx2.so",
"libs/libbloom_avx512.so", "libs/libbloom_avx512.so",
"libs/quantize-bloom", "libs/quantize-bloom",
"libs/libstarcoder_avx512.so",
"libs/libstarcoder_avx2.so",
"libs/quantize-starcoder",
"libs/main-bloom_avx2", "libs/main-bloom_avx2",
"libs/main-bloom_avx512", "libs/main-bloom_avx512",
"libs/main-gptneox_avx2", "libs/main-gptneox_avx2",
"libs/main-gptneox_avx512", "libs/main-gptneox_avx512",
"libs/main-llama_avx2", "libs/main-llama_avx2",
"libs/main-llama_avx512", "libs/main-llama_avx512",
"libs/main-starcoder_avx512",
"libs/main-starcoder_avx2",
] ]
platform_name = None platform_name = None

View file

@ -0,0 +1,22 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
from .starcoder import Starcoder

View file

@ -0,0 +1,433 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ===========================================================================
#
# This file is adapted from
# https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama.py
#
# MIT License
#
# Copyright (c) 2023 Andrei Betlen
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
from .starcoder_cpp import starcoder_load, starcoder_free, starcoder_run
from .starcoder_cpp import starcoder_tokenize, starcoder_detokenize
from .starcoder_cpp import starcoder_forward, starcoder_eval, starcoder_embed
from bigdl.llm.utils.common import invalidInputError
from bigdl.llm.ggml.model.generation import GenerationMixin
from typing import List, Optional, Generator, Sequence, Union
import time
import uuid
class Starcoder(GenerationMixin):
"""High-level Python wrapper for a quantized starcoder model."""
def __init__(
self,
model_path: str,
n_ctx: int = 512,
n_parts: int = -1,
n_gpu_layers: int = 0,
seed: int = -1,
f16_kv: bool = True,
logits_all: bool = False,
vocab_only: bool = False,
use_mmap: bool = True,
use_mlock: bool = False,
embedding: bool = False,
n_threads: Optional[int] = 2,
n_batch: int = 512,
last_n_tokens_size: int = 64,
lora_base: Optional[str] = None,
lora_path: Optional[str] = None,
verbose: bool = True,
):
"""Load a quantized starcoder model from `model_path`.
Args:
model_path: Path to the model.
n_ctx: Maximum context size.
n_parts: Number of parts to split the model into. If -1, the number of parts
is automatically determined.
seed: Random seed. For default value -1, current timestamp is used as seed.
f16_kv: Use half-precision for key/value cache.
logits_all: Return logits for all tokens, not just the last token.
vocab_only: Only load the vocabulary no weights.
use_mmap: Use mmap if possible.
use_mlock: Force the system to keep the model in RAM.
embedding: Embedding mode only.
n_threads: Number of threads to use. Default to be 2.
n_batch: Maximum number of prompt tokens to batch together when calling starcoder_eval.
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
lora_base: Optional path to base model, useful if using a quantized base model and
you want to apply LoRA to an f16 model.
lora_path: Path to a LoRA file to apply to the model.
verbose: Print verbose output to stderr.
Raises:
ValueError: If the model path does not exist.
Returns:
A Starcoder instance.
"""
self.model_path = model_path
self.ctx = starcoder_load(bytes(model_path, encoding='utf-8'), n_ctx, n_threads)
invalidInputError(self.ctx is not None, f"Failed to load model from {model_path}")
self.n_ctx = n_ctx
self.n_parts = n_parts
self.n_gpu_layers = n_gpu_layers
self.f16_kv = f16_kv
self.seed = seed
self.logits_all = logits_all
self.vocab_only = vocab_only
self.use_mmap = use_mmap
self.use_mlock = use_mlock
self.embedding = embedding
self.n_threads = n_threads
self.n_batch = n_batch
self.last_n_tokens_size = last_n_tokens_size
self.lora_base = lora_base
self.lora_path = lora_path
self.verbose = verbose
# TODO: Some parameters are temporarily not supported
unsupported_arg = {'n_parts': -1, 'n_gpu_layers': 0, 'f16_kv': True, 'logits_all': False,
'vocab_only': False, 'use_mmap': True, 'use_mlock': False,
'last_n_tokens_size': 64, 'lora_base': None,
'lora_path': None, 'verbose': True}
for arg in unsupported_arg.keys():
invalidInputError(getattr(self, arg) == unsupported_arg[arg], f"The parameter {arg}"
" is temporarily unsupported, please use the default value.")
def __call__(
self,
prompt: str,
suffix: Optional[str] = None,
max_tokens: int = 128,
temperature: float = 0.8,
top_p: float = 0.95,
logprobs: Optional[int] = None,
echo: bool = False,
stop: Optional[Union[str, List[str]]]=[],
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
):
# TODO: Some parameters are temporarily not supported
# Unsupported parameters are checked in `_supported_call`
return self._supported_call(prompt, max_tokens, stream, stop, echo, model,
suffix, temperature, top_p, logprobs, frequency_penalty,
presence_penalty, repeat_penalty, top_k, tfs_z, mirostat_mode,
mirostat_tau, mirostat_eta)
def _supported_call(self, prompt: str, max_tokens: int, stream: bool = False,
stop: Optional[List[str]] = [], echo: bool = False,
model: Optional[str] = None, *args):
# Check unsupporeted parameters
unsupported_arg = ['suffix', 'temperature', 'top_p', 'logprobs',
'frequency_penalty', 'presence_penalty', 'repeat_penalty', 'top_k',
'tfs_z', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'model']
defult_value = {'suffix': None, 'temperature': 0.8, 'top_p': 0.95, 'logprobs': None,
'frequency_penalty': 0.0, 'presence_penalty': 0.0,
'repeat_penalty': 1.1, 'top_k': 40, 'tfs_z': 1.0, 'mirostat_mode': 0,
'mirostat_tau': 5.0, 'mirostat_eta': 0.1}
for index in range(len(args)):
invalidInputError(args[index] == defult_value[unsupported_arg[index]],
f"The parameter {unsupported_arg[index]} is temporarily "
"unsupported, please use the default value.")
if stream:
return self.stream(prompt, max_tokens, stop, echo, model)
else:
return self._eval(prompt, max_tokens, False, stop, echo, model)
def _eval(self, prompt: str, max_tokens: int, match_str: bool,
stop: Optional[List[str]] = [], echo: bool = False,
model: Optional[str] = None):
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
created: int = int(time.time())
if model is None:
model_name = self.model_path
else:
model_name = model
prompt_len = len(self.tokenize(prompt))
if prompt.endswith("<|endoftext|>") or max_tokens < 1:
return {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": prompt if echo else "",
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage":
{
"prompt_tokens": prompt_len,
"completion_tokens": 0,
"total_tokens": prompt_len,
}
}
# use `buf` to store prompt and generated string,
# assume the average length of words is less than 20 bytes
buf = bytes((prompt_len + max_tokens) * 20)
ret = starcoder_run(ctx=self.ctx,
seed=self.seed,
n_threads=self.n_threads,
n_batch=self.n_batch,
n_predict=max_tokens,
match_str=match_str,
prompt=bytes(prompt, encoding='utf-8'),
buf=buf)
s = str(buf, encoding='utf-8').rstrip("\x00")
text = s.split(prompt)[1]
split_text = text
if stop != []:
for stop_word in stop:
split_text = split_text.split(stop_word)[0]
if split_text != text:
finish_reason = "stop"
else:
finish_reason = None
completion_len = len(self.tokenize(split_text))
return {"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": prompt + split_text if echo else split_text,
"index": 0,
"logprobs": None,
"finish_reason": finish_reason,
}
],
"usage":
{
"prompt_tokens": prompt_len,
"completion_tokens": completion_len,
"total_tokens": prompt_len + completion_len,
}
}
def stream(self, prompt: str, max_tokens: int, stop: Optional[List[str]] = [],
echo: bool = False, model: Optional[str] = None):
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
created: int = int(time.time())
if model is None:
model_name = self.model_path
else:
model_name = model
prompt_tokens: List[int] = self.tokenize(prompt.encode("utf-8"))
prompt_len = len(prompt_tokens)
if prompt.endswith("<|endoftext|>") or max_tokens < 1:
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": prompt if echo else "",
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage":
{
"prompt_tokens": prompt_len
}
}
else:
for i in range(max_tokens):
token = self.forward(prompt_tokens)
prompt_tokens.append(token)
text = self.detokenize([token]).decode("utf-8", errors="ignore")
if text.endswith("<|endoftext|>"):
print('\n')
else:
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": text,
"index": 0,
"logprobs": None,
"finish_reason": None,
}
],
"usage":
{
"prompt_tokens": prompt_len
}
}
def free(self):
starcoder_free(self.ctx)
def _tokenize(self, text: bytes, add_bos: bool = False) -> List[int]:
"""Tokenize a string.
Args:
text: The utf-8 encoded string to tokenize.
Raises:
RuntimeError: If the tokenization failed.
Returns:
A list of tokens.
"""
invalidInputError(self.ctx is not None,
"The attribute `ctx` of `Starcoder` object is None.")
return starcoder_tokenize(self.ctx, text, False)
def detokenize(self, tokens: List[int]) -> bytes:
"""Detokenize a list of tokens.
Args:
tokens: The list of tokens to detokenize.
Returns:
The detokenized string.
"""
invalidInputError(self.ctx is not None,
"The attribute `ctx` of `Starcoder` object is None.")
output = ""
for token in tokens:
output += starcoder_detokenize(self.ctx, token)
return output.encode('utf-8')
def forward(self, input_ids: List[int]) -> int:
return starcoder_forward(ctx=self.ctx,
input_ids=input_ids,
seed=self.seed,
n_threads=self.n_threads,
n_batch=self.n_batch)
def eval(self, input_ids: List[int]) -> List[List[float]]:
"""Only used for testing accuracy"""
return starcoder_eval(ctx=self.ctx,
input_ids=input_ids,
seed=self.seed,
n_threads=self.n_threads,
n_batch=len(input_ids))
def _generate(
self,
tokens: Sequence[int],
top_k: int = 40,
top_p: float = 0.95,
temp: float = 0.80,
repeat_penalty: float = 1.1,
reset: bool = True,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
) -> Generator[int, Optional[Sequence[int]], None]:
"""Create a generator of tokens from a prompt.
Examples:
>>> llm = Starcoder(your_model_path)
>>> tokens = llm._tokenize(b"Learning English is")
>>> for token in llm._generate(tokens):
>>> print(llm.detokenize([token]).decode("utf-8", errors="ignore"))
Args:
tokens: The prompt tokens.
Yields:
The generated tokens.
"""
# TODO: Some parameters are temporarily not supported
# Unsupported parameters are checked in `_supported_generate`
return self._supported_generate(tokens, top_k, top_p, temp, repeat_penalty, reset,
frequency_penalty, presence_penalty, tfs_z, mirostat_mode,
mirostat_tau, mirostat_eta)
def _supported_generate(self, tokens: Sequence[int], *args):
# Check unsupporeted parameters
unsupported_arg = ['top_k', 'top_p', 'temp', 'repeat_penalty', 'reset',
'frequency_penalty', 'presence_penalty', 'tfs_z', 'mirostat_mode',
'mirostat_tau', 'mirostat_eta']
defult_value = {'top_k': 40, 'top_p': 0.95, 'temp': 0.80, 'repeat_penalty': 1.1,
'reset': True, 'frequency_penalty': 0.0, 'presence_penalty': 0.0,
'tfs_z': 1.0, 'mirostat_mode': 0, 'mirostat_tau': 5.0, 'mirostat_eta': 0.1}
for index in range(len(args)):
invalidInputError(args[index] == defult_value[unsupported_arg[index]],
f"The parameter {unsupported_arg[index]} is temporarily "
"unsupported, please use the default value.")
invalidInputError(self.ctx is not None,
"The attribute `ctx` of `Starcoder` object is None.")
while True:
token = self.forward(tokens)
tokens_or_none = yield token
tokens.append(token)
if tokens_or_none is not None:
tokens.extend(tokens_or_none)
def embed(self, input: str) -> List[float]:
"""Only used for langchain"""
invalidInputError(self.embedding,
"Starcoder model must be created with embedding=True"
"to call this method.")
input_ids = self.tokenize(input)
return starcoder_embed(ctx=self.ctx,
input_ids=input_ids,
seed=self.seed,
n_threads=self.n_threads,
n_batch=len(input_ids))

View file

@ -0,0 +1,239 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ===========================================================================
#
# This file is adapted from
# https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama_cpp.py
#
# MIT License
#
# Copyright (c) 2023 Andrei Betlen
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
import sys
import os
import ctypes
from typing import List
from ctypes import (
c_int,
c_long,
c_float,
c_char_p,
c_void_p,
c_bool,
POINTER,
pointer,
Structure,
Array,
c_uint8,
c_size_t,
)
import pathlib
from bigdl.llm.utils import get_avx_flags
from bigdl.llm.utils.common import invalidInputError
# Load the library
def _load_shared_library(lib_base_name: str):
# Determine the file extension based on the platform
if sys.platform.startswith("linux") or sys.platform == "darwin":
lib_ext = ".so"
elif sys.platform == "win32":
lib_ext = ".dll"
else:
invalidInputError(False, "Unsupported platform")
avx = get_avx_flags()
# Construct the paths to the possible shared library names (python/llm/src/bigdl/llm/libs)
_base_path = pathlib.Path(__file__).parent.parent.parent.parent.resolve()
_base_path = _base_path / 'libs'
# Searching for the library in the current directory under the name "libbloom" (default name
# for bloomcpp) and "bloom" (default name for this repo)
_lib_paths = [
_base_path / f"lib{lib_base_name}{avx}{lib_ext}",
_base_path / f"{lib_base_name}{avx}{lib_ext}",
]
if "STARCODER_CPP_LIB" in os.environ:
lib_base_name = os.environ["STARCODER_CPP_LIB"]
_lib = pathlib.Path(lib_base_name)
_base_path = _lib.parent.resolve()
_lib_paths = [_lib.resolve()]
# Add the library directory to the DLL search path on Windows (if needed)
if sys.platform == "win32" and sys.version_info >= (3, 8):
os.add_dll_directory(str(_base_path))
# Try to load the shared library, handling potential errors
for _lib_path in _lib_paths:
if _lib_path.exists():
try:
return ctypes.CDLL(str(_lib_path))
except Exception as e:
invalidInputError(False,
f"Failed to load shared library '{_lib_path}': {e}")
invalidInputError(False, f"Shared library with base name '{lib_base_name}' not found")
# Specify the base name of the shared library to load
_lib_base_name = "starcoder"
# Load the library
_lib = _load_shared_library(_lib_base_name)
def c_free(p: c_void_p):
_lib.c_free(p)
_lib.c_free.argtypes = [c_void_p]
_lib.c_free.restype = None
def starcoder_load(fname: bytes, n_ctx: c_int, n_threads: c_int) -> c_void_p:
return _lib.starcoder_load(fname, n_ctx, n_threads)
_lib.starcoder_load.argtypes = [c_char_p, c_int, c_int]
_lib.starcoder_load.restype = c_void_p
def starcoder_free(ctx: c_void_p):
return _lib.starcoder_free(ctx)
_lib.starcoder_free.argtypes = [c_void_p]
_lib.starcoder_free.restype = None
def starcoder_run(ctx: c_void_p,
seed: c_int,
n_threads: c_int,
n_batch: c_int,
n_predict: c_int,
match_str: c_bool,
prompt: bytes,
buf: bytes) -> c_int:
return _lib.starcoder_run(ctx, seed, n_threads, n_batch, n_predict, match_str, prompt, buf)
_lib.starcoder_run.argtypes = [c_void_p, c_int, c_int, c_int, c_int, c_bool, c_char_p, c_char_p]
_lib.starcoder_run.restype = c_int
def starcoder_tokenize(ctx: c_void_p,
prompt: bytes,
bos: bool = False) -> List[int]:
n_tokens = c_int(0)
c_tokens = _lib.tokenize_api(ctx, prompt, bos, pointer(n_tokens))
tokens = [c_tokens[i] for i in range(0, n_tokens.value)]
c_free(c_tokens)
return tokens
_lib.tokenize_api.argtypes = [c_void_p, c_char_p, c_bool, c_void_p]
_lib.tokenize_api.restype = POINTER(c_int)
def starcoder_detokenize(ctx: c_void_p,
token_id: c_int) -> str:
c_chars = _lib.detokenize_api(ctx, token_id)
s = c_chars.decode('utf-8')
return s
_lib.detokenize_api.argtypes = [c_void_p, c_int]
_lib.detokenize_api.restype = c_char_p
def starcoder_eval(ctx: c_void_p,
input_ids: List[int],
seed: c_int,
n_threads: c_int,
n_batch: c_int) -> List[List[float]]:
length = len(input_ids)
c_input_ids = (c_int * length)(*input_ids)
n_logits = c_long(0)
c_logits = _lib.eval_api(ctx, c_input_ids, length, seed, n_threads, n_batch, pointer(n_logits))
n_vocab = n_logits.value // length
assert(n_vocab * length == n_logits.value)
logits = [[c_logits[i * n_vocab + j] for j in range(n_vocab)] for i in range(length)]
# do not free c_logits
return logits
_lib.eval_api.argtypes = [c_void_p, c_void_p, c_int, c_int, c_int, c_int, c_void_p]
_lib.eval_api.restype = POINTER(c_float)
def starcoder_embed(ctx: c_void_p,
input_ids: List[int],
seed: c_int,
n_threads: c_int,
n_batch: c_int) -> List[float]:
length = len(input_ids)
c_input_ids = (c_int * length)(*input_ids)
n_embd = c_long(0)
c_embeddings = _lib.embed_api(ctx, c_input_ids, length, seed, n_threads,
n_batch, pointer(n_embd))
embeddings = [c_embeddings[i] for i in range(n_embd.value)]
# do not free c_embeddings
return embeddings
_lib.embed_api.argtypes = [c_void_p, c_void_p, c_int, c_int, c_int, c_int, c_void_p]
_lib.embed_api.restype = POINTER(c_float)
def starcoder_forward(ctx: c_void_p,
input_ids: List[int],
seed: c_int,
n_threads: c_int,
n_batch: c_int) -> int:
length = len(input_ids)
c_input_ids = (c_int * length)(*input_ids)
token_id = _lib.forward_api(ctx, c_input_ids, length, seed, n_threads, n_batch)
return token_id
_lib.forward_api.argtypes = [c_void_p, c_void_p, c_int, c_int, c_int, c_int]
_lib.forward_api.restype = c_int
# ------------------------------------------------------------------- #