LLM: separate arc ut for disable XMX (#9953)
* separate test_optimize_model api with disabled xmx * delete test_optimize_model in test_transformers_api.py * set env variable in .sh/ put back test_optimize_model * unset env variable * remove env setting in .py * address errors in action * remove import ipex * lower tolerance
This commit is contained in:
parent
8d28aa8e2b
commit
50a851e3b3
3 changed files with 88 additions and 25 deletions
|
|
@ -24,8 +24,6 @@ from transformers import LlamaTokenizer, AutoTokenizer
|
|||
|
||||
device = os.environ['DEVICE']
|
||||
print(f'Running on {device}')
|
||||
if device == 'xpu':
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
@pytest.mark.parametrize('prompt, answer', [
|
||||
('What is the capital of France?\n\n', 'Paris')
|
||||
|
|
@ -75,32 +73,36 @@ def test_transformers_auto_model_for_speech_seq2seq_int4():
|
|||
|
||||
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
||||
|
||||
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
||||
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
|
||||
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH'))
|
||||
])
|
||||
def test_optimize_model(Model, Tokenizer, model_path):
|
||||
with torch.inference_mode():
|
||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
||||
# @pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
||||
# (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
|
||||
# (AutoModelForCausalLM, AutoTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH'))
|
||||
# ])
|
||||
# def test_optimize_model(Model, Tokenizer, model_path):
|
||||
# with torch.inference_mode():
|
||||
# tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
# input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
||||
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
model = model.to(device)
|
||||
logits_base_model = (model(input_ids)).logits
|
||||
model.to('cpu') # deallocate gpu memory
|
||||
# model = Model.from_pretrained(model_path,
|
||||
# load_in_4bit=True,
|
||||
# optimize_model=False,
|
||||
# trust_remote_code=True)
|
||||
# model = model.to(device)
|
||||
# logits_base_model = (model(input_ids)).logits
|
||||
# model.to('cpu') # deallocate gpu memory
|
||||
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
model = model.to(device)
|
||||
logits_optimized_model = (model(input_ids)).logits
|
||||
model.to('cpu')
|
||||
# model = Model.from_pretrained(model_path,
|
||||
# load_in_4bit=True,
|
||||
# optimize_model=True,
|
||||
# trust_remote_code=True)
|
||||
# model = model.to(device)
|
||||
# logits_optimized_model = (model(input_ids)).logits
|
||||
# model.to('cpu')
|
||||
|
||||
assert all(torch.isclose(logits_optimized_model, logits_base_model).tolist())
|
||||
# tol = 1e-02
|
||||
# num_false = torch.isclose(logits_optimized_model, logits_base_model, rtol=tol, atol=tol)\
|
||||
# .flatten().tolist().count(False)
|
||||
# percent_false = num_false / logits_optimized_model.numel()
|
||||
# assert percent_false < 1e-02
|
||||
|
||||
class Test_Optimize_Gpu_Model:
|
||||
def setup(self):
|
||||
|
|
|
|||
|
|
@ -0,0 +1,58 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import pytest
|
||||
import torch
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
device = os.environ['DEVICE']
|
||||
print(f'Running on {device}')
|
||||
|
||||
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
||||
|
||||
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
||||
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
|
||||
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH'))
|
||||
])
|
||||
def test_optimize_model(Model, Tokenizer, model_path):
|
||||
with torch.inference_mode():
|
||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
||||
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
model = model.to(device)
|
||||
logits_base_model = (model(input_ids)).logits
|
||||
model.to('cpu') # deallocate gpu memory
|
||||
|
||||
model = Model.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True)
|
||||
model = model.to(device)
|
||||
logits_optimized_model = (model(input_ids)).logits
|
||||
model.to('cpu')
|
||||
|
||||
tol = 1e-03
|
||||
num_false = torch.isclose(logits_optimized_model, logits_base_model, rtol=tol, atol=tol)\
|
||||
.flatten().tolist().count(False)
|
||||
percent_false = num_false / logits_optimized_model.numel()
|
||||
assert percent_false < 1e-02
|
||||
|
||||
|
|
@ -18,6 +18,9 @@ if [ -z "$THREAD_NUM" ]; then
|
|||
fi
|
||||
export OMP_NUM_THREADS=$THREAD_NUM
|
||||
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api.py -v -s
|
||||
export BIGDL_LLM_XMX_DISABLED=1
|
||||
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_disable_xmx.py -v -s
|
||||
unset BIGDL_LLM_XMX_DISABLED
|
||||
|
||||
now=$(date "+%s")
|
||||
time=$((now-start))
|
||||
|
|
|
|||
Loading…
Reference in a new issue