Chronos: add tf forecaster doc (#4923)
This commit is contained in:
parent
76608a5034
commit
500b7bbe99
2 changed files with 49 additions and 16 deletions
|
|
@ -18,7 +18,7 @@ import glob
|
|||
import shutil
|
||||
import urllib
|
||||
|
||||
autodoc_mock_imports = ["openvino", "pytorch_lightning"]
|
||||
autodoc_mock_imports = ["openvino", "pytorch_lightning", "keras"]
|
||||
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#sys.path.insert(0, '.')
|
||||
|
|
|
|||
|
|
@ -4,43 +4,76 @@ Forecasters
|
|||
LSTMForecaster
|
||||
----------------------------------------
|
||||
|
||||
:strong:`Please refer to` `BasePytorchForecaster <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/forecasters.html#basepytorchforecaster>`__ :strong:`for other methods other than initialization`.
|
||||
|
||||
Long short-term memory(LSTM) is a special type of recurrent neural network(RNN). We implement the basic version of LSTM - VanillaLSTM for this forecaster for time-series forecasting task. It has two LSTM layers, two dropout layer and a dense layer.
|
||||
|
||||
For the detailed algorithm description, please refer to `here <https://github.com/intel-analytics/BigDL/blob/main/docs/docs/Chronos/Algorithm/LSTMAlgorithm.md>`__.
|
||||
|
||||
`version:pytorch`
|
||||
|
||||
:strong:`Please refer to` `BasePytorchForecaster <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/forecasters.html#basepytorchforecaster>`__ :strong:`for other methods other than initialization`.
|
||||
|
||||
.. automodule:: bigdl.chronos.forecaster.lstm_forecaster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
`version:tensorflow`
|
||||
|
||||
:strong:`Please refer to` `BaseTF2Forecaster <https://qp-bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/forecasters.html#module-bigdl.chronos.forecaster.tf.base_forecaster>`__ :strong:`for other methods other than initialization`.
|
||||
|
||||
.. automodule:: bigdl.chronos.forecaster.tf.lstm_forecaster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
|
||||
Seq2SeqForecaster
|
||||
-------------------------------------------
|
||||
|
||||
:strong:`Please refer to` `BasePytorchForecaster <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/forecasters.html#basepytorchforecaster>`__ :strong:`for other methods other than initialization`.
|
||||
|
||||
Seq2SeqForecaster wraps a sequence to sequence model based on LSTM, and is suitable for multivariant & multistep time series forecasting.
|
||||
|
||||
`version:pytorch`
|
||||
|
||||
:strong:`Please refer to` `BasePytorchForecaster <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/forecasters.html#basepytorchforecaster>`__ :strong:`for other methods other than initialization`.
|
||||
|
||||
.. automodule:: bigdl.chronos.forecaster.seq2seq_forecaster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
`version:tensorflow`
|
||||
|
||||
:strong:`Please refer to` `BaseTF2Forecaster <https://qp-bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/forecasters.html#module-bigdl.chronos.forecaster.tf.base_forecaster>`__ :strong:`for other methods other than initialization`.
|
||||
|
||||
.. automodule:: bigdl.chronos.forecaster.tf.seq2seq_forecaster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
|
||||
TCNForecaster
|
||||
----------------------------------------
|
||||
|
||||
:strong:`Please refer to` `BasePytorchForecaster <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/forecasters.html#basepytorchforecaster>`__ :strong:`for other methods other than initialization`.
|
||||
|
||||
Temporal Convolutional Networks (TCN) is a neural network that use convolutional architecture rather than recurrent networks. It supports multi-step and multi-variant cases. Causal Convolutions enables large scale parallel computing which makes TCN has less inference time than RNN based model such as LSTM.
|
||||
|
||||
`version:pytorch`
|
||||
|
||||
:strong:`Please refer to` `BasePytorchForecaster <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/forecasters.html#basepytorchforecaster>`__ :strong:`for other methods other than initialization`.
|
||||
|
||||
.. automodule:: bigdl.chronos.forecaster.tcn_forecaster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
`version:tensorflow`
|
||||
|
||||
:strong:`Please refer to` `BaseTF2Forecaster <https://qp-bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/forecasters.html#module-bigdl.chronos.forecaster.tf.base_forecaster>`__ :strong:`for other methods other than initialization`.
|
||||
|
||||
.. automodule:: bigdl.chronos.forecaster.tf.tcn_forecaster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
|
||||
NBeatsForecaster
|
||||
----------------------------------------
|
||||
|
|
@ -75,7 +108,6 @@ TCMFForecaster supports distributed training and inference. It is based on Orca
|
|||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
|
||||
MTNetForecaster
|
||||
----------------------------------------
|
||||
|
||||
|
|
@ -115,17 +147,18 @@ For the detailed algorithm description, please refer to `here <https://github.co
|
|||
:show-inheritance:
|
||||
|
||||
|
||||
TFParkForecaster
|
||||
----------------------------------------
|
||||
|
||||
.. automodule:: bigdl.chronos.forecaster.tfpark_forecaster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
|
||||
BasePytorchForecaster
|
||||
----------------------------------------
|
||||
|
||||
.. autoclass:: bigdl.chronos.forecaster.base_forecaster.BasePytorchForecaster
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
||||
|
||||
BaseTF2Forecaster
|
||||
----------------------------------------
|
||||
|
||||
.. automodule:: bigdl.chronos.forecaster.tf.base_forecaster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
Loading…
Reference in a new issue