New convert support for C++ NPU (#12430)
* initial commit * fix * fix style * fix style * fix * fix
This commit is contained in:
parent
c089b6c10d
commit
4ffa6c752c
4 changed files with 180 additions and 19 deletions
|
|
@ -63,7 +63,7 @@ if __name__ == "__main__":
|
|||
transpose_value_cache=not args.disable_transpose_value_cache,
|
||||
mixed_precision=True,
|
||||
trust_remote_code=True,
|
||||
compile_full_model=True,
|
||||
convert_model=True,
|
||||
save_directory=save_dir)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
|
|
|||
|
|
@ -134,7 +134,7 @@ class _BaseAutoModelClass:
|
|||
mixed_precision = kwargs.pop('mixed_precision', False)
|
||||
quantization_group_size = kwargs.pop("quantization_group_size", 0)
|
||||
mock_device = kwargs.pop('device', None) # For mock on CPU
|
||||
compile_full_model = kwargs.pop('compile_full_model', False)
|
||||
convert_model = kwargs.pop('convert_model', False)
|
||||
save_directory = kwargs.pop('save_directory', None)
|
||||
|
||||
invalidInputError(
|
||||
|
|
@ -202,7 +202,7 @@ class _BaseAutoModelClass:
|
|||
"inter_pp": inter_pp,
|
||||
"intra_pp": intra_pp,
|
||||
"transpose_value_cache": transpose_value_cache,
|
||||
"compile_full_model": compile_full_model,
|
||||
"convert_model": convert_model,
|
||||
"save_directory": save_directory,
|
||||
}
|
||||
model = cls.optimize_npu_model(*args, **optimize_kwargs)
|
||||
|
|
@ -241,7 +241,7 @@ class _BaseAutoModelClass:
|
|||
inter_pp = kwargs.pop("inter_pp", None)
|
||||
intra_pp = kwargs.pop("intra_pp", None)
|
||||
transpose_value_cache = kwargs.pop("transpose_value_cache", True)
|
||||
compile_full_model = kwargs.pop('compile_full_model', False)
|
||||
convert_model = kwargs.pop('convert_model', False)
|
||||
save_directory = kwargs.pop('save_directory', None)
|
||||
|
||||
if hasattr(model, "llm"):
|
||||
|
|
@ -280,7 +280,7 @@ class _BaseAutoModelClass:
|
|||
max_prompt_len=max_prompt_len,
|
||||
transpose_value_cache=transpose_value_cache,
|
||||
group_size=quantization_group_size,
|
||||
compile_full_model=compile_full_model,
|
||||
convert_model=convert_model,
|
||||
save_directory=save_directory)
|
||||
model.save_low_bit = types.MethodType(save_low_bit, model)
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -193,7 +193,7 @@ def convert_llm(model: torch.nn.Module,
|
|||
max_prompt_len: int,
|
||||
transpose_value_cache: bool,
|
||||
group_size: int,
|
||||
compile_full_model: bool=False,
|
||||
convert_model: bool=False,
|
||||
save_directory: str=None):
|
||||
# whether to set layernorm weight as const
|
||||
layernorm_const = os.environ.get("IPEX_LLM_LAYERNORM_CONST", "1") == "1"
|
||||
|
|
@ -203,6 +203,16 @@ def convert_llm(model: torch.nn.Module,
|
|||
else:
|
||||
n_splits_linear = model.config.hidden_size // group_size
|
||||
n_splits_down_proj = model.config.intermediate_size // group_size
|
||||
if convert_model:
|
||||
convert_llm_for_deploy(model,
|
||||
kv_len,
|
||||
max_prompt_len,
|
||||
transpose_value_cache,
|
||||
n_splits_linear,
|
||||
n_splits_down_proj,
|
||||
group_size,
|
||||
save_directory)
|
||||
return 0
|
||||
if model.config.model_type == "llama":
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
weight_dir = os.path.join(temp_dir, "model_weights")
|
||||
|
|
@ -340,7 +350,7 @@ def convert_llm(model: torch.nn.Module,
|
|||
from .qwen import convert_qwen_layer, convert_lm_head_and_embedding
|
||||
first_blob_path, last_blob_path = convert_lm_head_and_embedding(model, n_splits_linear,
|
||||
temp_dir, weight_dir,
|
||||
compile_full_model)
|
||||
convert_model)
|
||||
|
||||
param_list = []
|
||||
for layer_idx in range(0, layer_num):
|
||||
|
|
@ -350,11 +360,6 @@ def convert_llm(model: torch.nn.Module,
|
|||
with Pool() as pool:
|
||||
result = pool.starmap(convert_qwen_layer, param_list)
|
||||
|
||||
if compile_full_model:
|
||||
convert_qwen_layer(model, 0, n_splits_linear, n_splits_down_proj,
|
||||
temp_dir, weight_dir, transpose_value_cache, max_prompt_len,
|
||||
group_size, layernorm_const, "prefill")
|
||||
|
||||
# Prefill Runner
|
||||
from ipex_llm.transformers.npu_models.convert_mp import convert_qwen
|
||||
convert_qwen(model,
|
||||
|
|
@ -403,3 +408,48 @@ def convert_llm(model: torch.nn.Module,
|
|||
import types
|
||||
model.generate = types.MethodType(generate, model)
|
||||
return model
|
||||
|
||||
|
||||
def convert_llm_for_deploy(model: torch.nn.Module,
|
||||
kv_len: int,
|
||||
max_prompt_len: int,
|
||||
transpose_value_cache: bool,
|
||||
n_splits_linear: int,
|
||||
n_splits_down_proj: int,
|
||||
group_size: int,
|
||||
save_directory: str=None):
|
||||
os.mkdir(save_directory)
|
||||
weight_dir = os.path.join(save_directory, "model_weights")
|
||||
os.mkdir(weight_dir)
|
||||
|
||||
if model.config.model_type == "qwen2":
|
||||
layernorm_const = True
|
||||
if model.config.hidden_size == 1536:
|
||||
# Qwen2-1.5B-Instruct
|
||||
fused_layers = 1
|
||||
else:
|
||||
fused_layers = 2
|
||||
update_dict = {"kv_len": kv_len,
|
||||
"num_head": model.model.layers[0].self_attn.num_heads,
|
||||
"head_dim": model.model.layers[0].self_attn.head_dim,
|
||||
"transpose_value_cache": transpose_value_cache,
|
||||
"max_prompt_len": max_prompt_len,
|
||||
"layernorm_const": layernorm_const,
|
||||
"group_size": group_size,
|
||||
"fused_layers": fused_layers}
|
||||
model.config.update(update_dict)
|
||||
model.config.save_pretrained(save_directory)
|
||||
|
||||
from .qwen import convert_qwen_layer, convert_fused_qwen_layer
|
||||
from .qwen import convert_lm_head_and_embedding
|
||||
# save fused_layers blobs of fused decoder layers
|
||||
convert_fused_qwen_layer(model, fused_layers, n_splits_linear, n_splits_down_proj,
|
||||
save_directory, weight_dir, transpose_value_cache, kv_len,
|
||||
group_size, layernorm_const, "decode")
|
||||
# save blob of single prefill layer
|
||||
convert_qwen_layer(model, 0, n_splits_linear, n_splits_down_proj,
|
||||
save_directory, weight_dir, transpose_value_cache, max_prompt_len,
|
||||
group_size, layernorm_const, "prefill")
|
||||
# save blob of lmhead and bin of embedding
|
||||
convert_lm_head_and_embedding(model, n_splits_linear,
|
||||
save_directory, weight_dir, True)
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@ from ipex_llm.transformers.npu_models.lm_head import SlicedLMHead
|
|||
|
||||
|
||||
def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
|
||||
compile_full_model=False):
|
||||
convert_model=False):
|
||||
num_heads = model.model.layers[0].self_attn.num_heads
|
||||
head_dim = model.model.layers[0].self_attn.head_dim
|
||||
rms_norm_eps = model.config.rms_norm_eps
|
||||
|
|
@ -60,7 +60,7 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
|
|||
)
|
||||
|
||||
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, f"lm_head",
|
||||
temp_dir, True, True)
|
||||
temp_dir, True, False)
|
||||
|
||||
# save weights bins files
|
||||
if not isinstance(lm_head, SlicedLMHead):
|
||||
|
|
@ -83,11 +83,13 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
|
|||
dtype=np.float16,
|
||||
input_length=1,
|
||||
)
|
||||
first_blob_path = update_names_of_IR_and_export_blob(new_embedding, f"embedding",
|
||||
temp_dir, True, keep_ir=True)
|
||||
if compile_full_model:
|
||||
if convert_model:
|
||||
bin_file = os.path.join(weight_dir, f"model_embedding_input_0.bin")
|
||||
embedding_layer.weight.to(torch.float16).detach().numpy().tofile(bin_file)
|
||||
first_blob_path = True
|
||||
else:
|
||||
first_blob_path = update_names_of_IR_and_export_blob(new_embedding, f"embedding",
|
||||
temp_dir, True, keep_ir=True)
|
||||
return first_blob_path, last_blob_path
|
||||
|
||||
|
||||
|
|
@ -138,8 +140,8 @@ def convert_qwen_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
|||
else:
|
||||
input_len = kv_len
|
||||
decoder_name = "decoder_layer_prefill"
|
||||
compile = False
|
||||
keep_ir = True
|
||||
compile = True
|
||||
keep_ir = False
|
||||
single_decoder = LowBitQwenMultiDecoderlayer(
|
||||
[1, input_len, num_heads * head_dim],
|
||||
input_layernorm_weights=None,
|
||||
|
|
@ -190,3 +192,112 @@ def convert_qwen_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
|||
scale.numpy().tofile(bin_file)
|
||||
|
||||
del single_decoder
|
||||
|
||||
|
||||
def convert_fused_qwen_layer(model, fused_layers, n_splits_linear, n_splits_down_proj,
|
||||
save_dir, weight_dir, transpose_value_cache, kv_len, group_size,
|
||||
layernorm_const, mode="decode"):
|
||||
num_heads = model.model.layers[0].self_attn.num_heads
|
||||
num_key_value_heads = model.model.layers[0].self_attn.num_key_value_heads
|
||||
head_dim = model.model.layers[0].self_attn.head_dim
|
||||
intermediate_size = model.config.intermediate_size
|
||||
rms_norm_eps = model.config.rms_norm_eps
|
||||
layer_num = len(model.model.layers)
|
||||
fused_layer_num = layer_num // fused_layers
|
||||
|
||||
from ipex_llm.transformers.npu_models.qwen2_mp import LowBitQwenMultiDecoderlayer
|
||||
for i in range(fused_layers):
|
||||
layer_start = i * fused_layer_num
|
||||
layer_end = min((i + 1) * fused_layer_num, layer_num)
|
||||
layer_weights = []
|
||||
input_layer_norm_weights = []
|
||||
post_attn_layernorm_weights = []
|
||||
q_biases = []
|
||||
k_biases = []
|
||||
v_biases = []
|
||||
layer_indexs = range(layer_start, layer_end)
|
||||
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
|
||||
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
|
||||
for layer_idx in layer_indexs:
|
||||
curr_layer = model.model.layers[layer_idx]
|
||||
attn_layer = curr_layer.self_attn
|
||||
mlp_layer = curr_layer.mlp
|
||||
|
||||
weights = []
|
||||
for layer_list in [attn_layer.q_proj_dq_list, attn_layer.k_proj_dq_list,
|
||||
attn_layer.v_proj_dq_list, attn_layer.o_proj_dq_list,
|
||||
mlp_layer.gate_proj_dq_list, mlp_layer.up_proj_dq_list,
|
||||
mlp_layer.down_proj_dq_list]:
|
||||
l_weights = []
|
||||
scales = []
|
||||
for l in layer_list:
|
||||
l_weights.append(l.weight)
|
||||
scales.append(l.scale)
|
||||
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
||||
|
||||
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
||||
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
|
||||
layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
|
||||
layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
|
||||
|
||||
layer_weights.extend(weights)
|
||||
input_layer_norm_weights.append(layer_norm_0)
|
||||
post_attn_layernorm_weights.append(layer_norm_1)
|
||||
q_biases.append(attn_layer.q_proj_dq_list.q_proj_dq_0.bias.to(torch.float16))
|
||||
k_biases.append(attn_layer.k_proj_dq_list.k_proj_dq_0.bias.to(torch.float16))
|
||||
v_biases.append(attn_layer.v_proj_dq_list.v_proj_dq_0.bias.to(torch.float16))
|
||||
|
||||
# save weight
|
||||
input_lm_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_3.bin")
|
||||
post_lm_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_4.bin")
|
||||
layer_norm_0.data.numpy().tofile(input_lm_bin_file)
|
||||
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
|
||||
st_idx = 5
|
||||
# 5 / 6 / 7 are bias
|
||||
q_bias_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx}.bin")
|
||||
k_bias_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+1}.bin")
|
||||
v_bias_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+2}.bin")
|
||||
q_biases[-1].data.numpy().tofile(q_bias_bin_file)
|
||||
k_biases[-1].data.numpy().tofile(k_bias_bin_file)
|
||||
v_biases[-1].data.numpy().tofile(v_bias_bin_file)
|
||||
# 6, 7 are past k/v
|
||||
for idx, (weight, scale) in enumerate(weights):
|
||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+3+idx*2}.bin")
|
||||
weight.numpy().tofile(bin_file)
|
||||
bin_file = os.path.join(weight_dir,
|
||||
f"model_{layer_idx}_input_{st_idx+3+idx*2+1}.bin")
|
||||
scale.numpy().tofile(bin_file)
|
||||
|
||||
if isinstance(weights[0], tuple):
|
||||
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
|
||||
else: # FP16 Linear
|
||||
np_dtype = np.float16
|
||||
|
||||
fused_decoder = LowBitQwenMultiDecoderlayer(
|
||||
[1, 1, num_heads * head_dim],
|
||||
input_layernorm_weights=input_layer_norm_weights,
|
||||
post_attn_layernorm_weights=post_attn_layernorm_weights,
|
||||
q_biases=q_biases,
|
||||
k_biases=k_biases,
|
||||
v_biases=v_biases,
|
||||
cached_cos=cached_cos,
|
||||
cached_sin=cached_sin,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
num_layers=fused_layer_num,
|
||||
max_seq_len=kv_len,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
mode=mode,
|
||||
transpose_value=transpose_value_cache,
|
||||
dtype=np_dtype,
|
||||
n_splits_linear=n_splits_linear,
|
||||
n_splits_down_proj=n_splits_down_proj,
|
||||
group_size=group_size
|
||||
)
|
||||
update_names_of_IR_and_export_blob(fused_decoder,
|
||||
f"decoder_layer_{i}",
|
||||
save_dir,
|
||||
compile_blob=True,
|
||||
keep_ir=False)
|
||||
return 0
|
||||
|
|
|
|||
Loading…
Reference in a new issue