[LLM] Add transformer_autocast_bf16 into all-in-one (#9890)
* Add transformer_autocast_bf16 into all-in-one
This commit is contained in:
		
							parent
							
								
									4af88a67b9
								
							
						
					
					
						commit
						4f4ce73f31
					
				
					 3 changed files with 77 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -1,21 +1,26 @@
 | 
			
		|||
# All in One Benchmark Test
 | 
			
		||||
 | 
			
		||||
All in one benchmark test allows users to test all the benchmarks and record them in a result CSV. Users can provide models and related information in `config.yaml`.
 | 
			
		||||
 | 
			
		||||
Before running, make sure to have [bigdl-llm](../../../README.md).
 | 
			
		||||
 | 
			
		||||
## Dependencies
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
pip install omegaconf
 | 
			
		||||
pip install pandas
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Install gperftools to use libtcmalloc.so for MAX GPU to get better performance:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
conda install -c conda-forge -y gperftools=2.10
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Config
 | 
			
		||||
 | 
			
		||||
Config YAML file has following format
 | 
			
		||||
 | 
			
		||||
```yaml
 | 
			
		||||
repo_id:
 | 
			
		||||
  - 'THUDM/chatglm-6b'
 | 
			
		||||
| 
						 | 
				
			
			@ -35,6 +40,7 @@ test_api:
 | 
			
		|||
  - "native_int4"
 | 
			
		||||
  - "optimize_model"
 | 
			
		||||
  - "pytorch_autocast_bf16"
 | 
			
		||||
  # - "transformer_autocast_bf16"
 | 
			
		||||
  # - "ipex_fp16_gpu" # on Intel GPU
 | 
			
		||||
  # - "transformer_int4_gpu"  # on Intel GPU
 | 
			
		||||
  # - "optimize_model_gpu"  # on Intel GPU
 | 
			
		||||
| 
						 | 
				
			
			@ -44,9 +50,11 @@ cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu w
 | 
			
		|||
```
 | 
			
		||||
 | 
			
		||||
## Run
 | 
			
		||||
 | 
			
		||||
run `python run.py`, this will output results to `results.csv`.
 | 
			
		||||
 | 
			
		||||
For SPR performance, run `bash run-spr.sh`.
 | 
			
		||||
 | 
			
		||||
> **Note**
 | 
			
		||||
>
 | 
			
		||||
> The value of `OMP_NUM_THREADS` should be the same as the cpu cores specified by `numactl -C`.
 | 
			
		||||
| 
						 | 
				
			
			@ -57,4 +65,4 @@ For SPR performance, run `bash run-spr.sh`.
 | 
			
		|||
 | 
			
		||||
For ARC performance, run `bash run-arc.sh`.
 | 
			
		||||
 | 
			
		||||
For MAX GPU performance, run `bash run-max-gpu.sh`.
 | 
			
		||||
For MAX GPU performance, run `bash run-max-gpu.sh`.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -16,6 +16,7 @@ test_api:
 | 
			
		|||
  - "native_int4"
 | 
			
		||||
  - "optimize_model"
 | 
			
		||||
  - "pytorch_autocast_bf16"
 | 
			
		||||
  # - "transformer_autocast_bf16"
 | 
			
		||||
  # - "ipex_fp16_gpu" # on Intel GPU
 | 
			
		||||
  # - "transformer_int4_gpu"  # on Intel GPU
 | 
			
		||||
  # - "optimize_model_gpu"  # on Intel GPU
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -84,6 +84,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
        result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
 | 
			
		||||
    elif test_api == 'transformer_int4_gpu_win':
 | 
			
		||||
        result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding)
 | 
			
		||||
    elif test_api == 'transformer_autocast_bf16':
 | 
			
		||||
        result = run_transformer_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
 | 
			
		||||
 | 
			
		||||
    for in_out_pair in in_out_pairs:
 | 
			
		||||
        if result and result[in_out_pair]:
 | 
			
		||||
| 
						 | 
				
			
			@ -759,6 +761,71 @@ def run_transformer_int4_gpu_win(repo_id,
 | 
			
		|||
    gc.collect()
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
def run_transformer_autocast_bf16( repo_id,
 | 
			
		||||
                    local_model_hub,
 | 
			
		||||
                    in_out_pairs,
 | 
			
		||||
                    warm_up,
 | 
			
		||||
                    num_trials,
 | 
			
		||||
                    num_beams):
 | 
			
		||||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
			
		||||
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    # Load model in bf16,
 | 
			
		||||
    # which convert the relevant layers in the model into BF16 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in CHATGLM_IDS:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
			
		||||
                                          use_cache=True).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif repo_id in LLAMA_IDS:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
			
		||||
                                                     use_cache=True).eval()
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
			
		||||
                                                     use_cache=True).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s".format(end - st))
 | 
			
		||||
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
    with torch.inference_mode(), torch.autocast("cpu"):
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            in_out_len = in_out.split("-")
 | 
			
		||||
            in_len = int(in_out_len[0])
 | 
			
		||||
            out_len = int(in_out_len[1])
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # in_len.txt maybe shorter than we need,
 | 
			
		||||
            # use much longer context to make sure input length
 | 
			
		||||
            test_length = min(in_len*2, 8192)
 | 
			
		||||
            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
			
		||||
                test_length = test_length * 2
 | 
			
		||||
            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            num_beams=num_beams)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
                print(output[0])
 | 
			
		||||
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
			
		||||
                                          actual_in_len, actual_out_len])
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    from omegaconf import OmegaConf
 | 
			
		||||
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue