[LLM] Add transformer_autocast_bf16 into all-in-one (#9890)

* Add transformer_autocast_bf16 into all-in-one
This commit is contained in:
Ziteng Zhang 2024-01-11 17:51:07 +08:00 committed by GitHub
parent 4af88a67b9
commit 4f4ce73f31
3 changed files with 77 additions and 1 deletions

View file

@ -1,21 +1,26 @@
# All in One Benchmark Test
All in one benchmark test allows users to test all the benchmarks and record them in a result CSV. Users can provide models and related information in `config.yaml`.
Before running, make sure to have [bigdl-llm](../../../README.md).
## Dependencies
```bash
pip install omegaconf
pip install pandas
```
Install gperftools to use libtcmalloc.so for MAX GPU to get better performance:
```bash
conda install -c conda-forge -y gperftools=2.10
```
## Config
Config YAML file has following format
```yaml
repo_id:
- 'THUDM/chatglm-6b'
@ -35,6 +40,7 @@ test_api:
- "native_int4"
- "optimize_model"
- "pytorch_autocast_bf16"
# - "transformer_autocast_bf16"
# - "ipex_fp16_gpu" # on Intel GPU
# - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU
@ -44,9 +50,11 @@ cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu w
```
## Run
run `python run.py`, this will output results to `results.csv`.
For SPR performance, run `bash run-spr.sh`.
> **Note**
>
> The value of `OMP_NUM_THREADS` should be the same as the cpu cores specified by `numactl -C`.
@ -57,4 +65,4 @@ For SPR performance, run `bash run-spr.sh`.
For ARC performance, run `bash run-arc.sh`.
For MAX GPU performance, run `bash run-max-gpu.sh`.
For MAX GPU performance, run `bash run-max-gpu.sh`.

View file

@ -16,6 +16,7 @@ test_api:
- "native_int4"
- "optimize_model"
- "pytorch_autocast_bf16"
# - "transformer_autocast_bf16"
# - "ipex_fp16_gpu" # on Intel GPU
# - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU

View file

@ -84,6 +84,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
elif test_api == 'transformer_int4_gpu_win':
result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding)
elif test_api == 'transformer_autocast_bf16':
result = run_transformer_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
for in_out_pair in in_out_pairs:
if result and result[in_out_pair]:
@ -759,6 +761,71 @@ def run_transformer_int4_gpu_win(repo_id,
gc.collect()
return result
def run_transformer_autocast_bf16( repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials,
num_beams):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer
model_path = get_model_path(repo_id, local_model_hub)
# Load model in bf16,
# which convert the relevant layers in the model into BF16 format
st = time.perf_counter()
if repo_id in CHATGLM_IDS:
model = AutoModel.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
use_cache=True).eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit='bf16', trust_remote_code=True, torch_dtype=torch.bfloat16,
use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
model = BenchmarkWrapper(model)
result = {}
with torch.inference_mode(), torch.autocast("cpu"):
for in_out in in_out_pairs:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
# As different tokenizer has different encodings,
# in_len.txt maybe shorter than we need,
# use much longer context to make sure input length
test_length = min(in_len*2, 8192)
while test_length not in [32, 256, 1024, 2048, 8192]:
test_length = test_length * 2
input_str = open(f"prompt/{test_length}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt")
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
end = time.perf_counter()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
actual_in_len, actual_out_len])
return result
if __name__ == '__main__':
from omegaconf import OmegaConf
conf = OmegaConf.load(f'{current_dir}/config.yaml')