LLM: support num_beams in all-in-one benchmark (#9141)
* support num_beams * fix
This commit is contained in:
		
							parent
							
								
									62ac7ae444
								
							
						
					
					
						commit
						4f34557224
					
				
					 3 changed files with 52 additions and 32 deletions
				
			
		| 
						 | 
				
			
			@ -19,6 +19,7 @@ repo_id:
 | 
			
		|||
local_model_hub: 'path to your local model hub'
 | 
			
		||||
warm_up: 1
 | 
			
		||||
num_trials: 3
 | 
			
		||||
num_beams: 1 # default to greedy search
 | 
			
		||||
in_out_pairs:
 | 
			
		||||
  - '32-32'
 | 
			
		||||
  - '1024-128'
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -5,6 +5,7 @@ repo_id:
 | 
			
		|||
local_model_hub: 'path to your local model hub'
 | 
			
		||||
warm_up: 1
 | 
			
		||||
num_trials: 3
 | 
			
		||||
num_beams: 1 # default to greedy search
 | 
			
		||||
in_out_pairs:
 | 
			
		||||
  - '32-32'
 | 
			
		||||
  - '1024-128'
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -38,22 +38,22 @@ LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
 | 
			
		|||
results = []
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3):
 | 
			
		||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1):
 | 
			
		||||
    # TODO: make a parameter
 | 
			
		||||
    if test_api == 'transformer_int4':
 | 
			
		||||
        result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
        result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
 | 
			
		||||
    elif test_api == 'native_int4':
 | 
			
		||||
        run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
    elif test_api == 'optimize_model':
 | 
			
		||||
        result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
        result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
 | 
			
		||||
    elif test_api == 'transformer_int4_gpu':
 | 
			
		||||
        result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
        result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
 | 
			
		||||
    elif test_api == 'optimize_model_gpu':
 | 
			
		||||
        result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
        result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
 | 
			
		||||
    elif test_api == 'pytorch_autocast_bf16':
 | 
			
		||||
        result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
        result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
 | 
			
		||||
    elif test_api == 'ipex_fp16_gpu':
 | 
			
		||||
        result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
        result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
 | 
			
		||||
 | 
			
		||||
    for in_out_pair in in_out_pairs:
 | 
			
		||||
        results.append([repo_id,
 | 
			
		||||
| 
						 | 
				
			
			@ -62,7 +62,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
                        np.mean(result[in_out_pair], axis=0)[2],
 | 
			
		||||
                        in_out_pair,
 | 
			
		||||
                        f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
 | 
			
		||||
                        f'-{int(np.mean(result[in_out_pair], axis=0)[4])}'])
 | 
			
		||||
                        f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
 | 
			
		||||
                        num_beams])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_model_path(repo_id, local_model_hub):
 | 
			
		||||
| 
						 | 
				
			
			@ -119,7 +120,8 @@ def run_transformer_int4(repo_id,
 | 
			
		|||
                         local_model_hub,
 | 
			
		||||
                         in_out_pairs,
 | 
			
		||||
                         warm_up,
 | 
			
		||||
                         num_trials):
 | 
			
		||||
                         num_trials,
 | 
			
		||||
                         num_beams):
 | 
			
		||||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -131,10 +133,12 @@ def run_transformer_int4(repo_id,
 | 
			
		|||
        model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, torch_dtype='auto')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif repo_id in LLAMA_IDS:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
 | 
			
		||||
                                                     use_cache=True)
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True)
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
 | 
			
		||||
                                                     use_cache=True)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s".format(end - st))
 | 
			
		||||
| 
						 | 
				
			
			@ -159,12 +163,13 @@ def run_transformer_int4(repo_id,
 | 
			
		|||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len]
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            num_beams=num_beams)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
| 
						 | 
				
			
			@ -179,7 +184,8 @@ def run_pytorch_autocast_bf16(repo_id,
 | 
			
		|||
                         local_model_hub,
 | 
			
		||||
                         in_out_pairs,
 | 
			
		||||
                         warm_up,
 | 
			
		||||
                         num_trials):
 | 
			
		||||
                         num_trials,
 | 
			
		||||
                         num_beams):
 | 
			
		||||
    from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, LlamaTokenizer
 | 
			
		||||
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
| 
						 | 
				
			
			@ -188,11 +194,13 @@ def run_pytorch_autocast_bf16(repo_id,
 | 
			
		|||
        # TODO: need verify chatglm family run bf16.
 | 
			
		||||
        invalidInputError(False, "Currently pytorch do not support bfloat16 on cpu for chatglm models.")
 | 
			
		||||
    elif repo_id in LLAMA_IDS:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
			
		||||
                                                     use_cache=True)
 | 
			
		||||
        # Need to use LlamaTokenizer, reason please refer to issue: https://github.com/intel-analytics/BigDL/issues/8944
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
 | 
			
		||||
                                                     use_cache=True)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s".format(end - st))
 | 
			
		||||
| 
						 | 
				
			
			@ -216,13 +224,14 @@ def run_pytorch_autocast_bf16(repo_id,
 | 
			
		|||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len]
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            print("input tokens: {}".format(input_ids.shape[1]))
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, use_cache=True)
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            num_beams=num_beams)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
| 
						 | 
				
			
			@ -237,7 +246,8 @@ def run_optimize_model(repo_id,
 | 
			
		|||
                       local_model_hub,
 | 
			
		||||
                       in_out_pairs,
 | 
			
		||||
                       warm_up,
 | 
			
		||||
                       num_trials):
 | 
			
		||||
                       num_trials,
 | 
			
		||||
                       num_beams):
 | 
			
		||||
    from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
 | 
			
		||||
    from bigdl.llm import optimize_model
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -281,12 +291,13 @@ def run_optimize_model(repo_id,
 | 
			
		|||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len]
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            num_beams=num_beams)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
| 
						 | 
				
			
			@ -302,7 +313,8 @@ def run_transformer_int4_gpu(repo_id,
 | 
			
		|||
                             local_model_hub,
 | 
			
		||||
                             in_out_pairs,
 | 
			
		||||
                             warm_up,
 | 
			
		||||
                             num_trials):
 | 
			
		||||
                             num_trials,
 | 
			
		||||
                             num_beams):
 | 
			
		||||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
| 
						 | 
				
			
			@ -351,12 +363,13 @@ def run_transformer_int4_gpu(repo_id,
 | 
			
		|||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len].to('xpu')
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            num_beams=num_beams)
 | 
			
		||||
                torch.xpu.synchronize()
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                output_ids = output_ids.cpu()
 | 
			
		||||
| 
						 | 
				
			
			@ -375,7 +388,8 @@ def run_optimize_model_gpu(repo_id,
 | 
			
		|||
                           local_model_hub,
 | 
			
		||||
                           in_out_pairs,
 | 
			
		||||
                           warm_up,
 | 
			
		||||
                           num_trials):
 | 
			
		||||
                           num_trials,
 | 
			
		||||
                           num_beams):
 | 
			
		||||
    from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
			
		||||
    from bigdl.llm import optimize_model
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
| 
						 | 
				
			
			@ -427,12 +441,13 @@ def run_optimize_model_gpu(repo_id,
 | 
			
		|||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len].to('xpu')
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            num_beams=num_beams)
 | 
			
		||||
                torch.xpu.synchronize()
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                output_ids = output_ids.cpu()
 | 
			
		||||
| 
						 | 
				
			
			@ -451,7 +466,8 @@ def run_ipex_fp16_gpu(repo_id,
 | 
			
		|||
                      local_model_hub,
 | 
			
		||||
                      in_out_pairs,
 | 
			
		||||
                      warm_up,
 | 
			
		||||
                      num_trials):
 | 
			
		||||
                      num_trials,
 | 
			
		||||
                      num_beams):
 | 
			
		||||
    from transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
| 
						 | 
				
			
			@ -496,12 +512,13 @@ def run_ipex_fp16_gpu(repo_id,
 | 
			
		|||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")[:, :in_len].to('xpu')
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            num_beams=num_beams)
 | 
			
		||||
                torch.xpu.synchronize()
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                output_ids = output_ids.cpu()
 | 
			
		||||
| 
						 | 
				
			
			@ -524,7 +541,8 @@ if __name__ == '__main__':
 | 
			
		|||
    import pandas as pd
 | 
			
		||||
    for api in conf.test_api:
 | 
			
		||||
        for model in conf.repo_id:
 | 
			
		||||
            run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'])
 | 
			
		||||
        df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)', 'input/output tokens', 'actual input/output tokens'])
 | 
			
		||||
            run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'])
 | 
			
		||||
        df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)',
 | 
			
		||||
                                            'input/output tokens', 'actual input/output tokens', 'num_beams'])
 | 
			
		||||
        df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
 | 
			
		||||
        results = []
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue