Initial support of NPU level0 Model (#12177)
* first commit to support load dll and init llm pipeline * add init generate * fix style * small updates * fix style and check tokens number
This commit is contained in:
parent
ac44e98b7d
commit
4d93bb81fe
4 changed files with 417 additions and 0 deletions
|
|
@ -0,0 +1,90 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
from ipex_llm.transformers.npu_pipeline_model import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
||||||
|
system_prompt: str) -> str:
|
||||||
|
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
|
||||||
|
# The first user input is _not_ stripped
|
||||||
|
do_strip = False
|
||||||
|
for user_input, response in chat_history:
|
||||||
|
user_input = user_input.strip() if do_strip else user_input
|
||||||
|
do_strip = True
|
||||||
|
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
|
||||||
|
message = message.strip() if do_strip else message
|
||||||
|
texts.append(f'{message} [/INST]')
|
||||||
|
return ''.join(texts)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Predict Tokens using `generate()` API for npu model"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--repo-id-or-model-path",
|
||||||
|
type=str,
|
||||||
|
default=r"C:\\Llama2-converted-weights\\",
|
||||||
|
help="The folder path of converted model blobs",
|
||||||
|
)
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
||||||
|
parser.add_argument("--max-output-len", type=int, default=1024)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
ov_model=True,
|
||||||
|
max_output_len=args.max_output_len,
|
||||||
|
model_name="Model70")
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
DEFAULT_SYSTEM_PROMPT = """\
|
||||||
|
"""
|
||||||
|
|
||||||
|
print("-" * 80)
|
||||||
|
print("done")
|
||||||
|
with torch.inference_mode():
|
||||||
|
print("finish to load")
|
||||||
|
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||||
|
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
print("input length:", len(_input_ids[0]))
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(
|
||||||
|
_input_ids, max_new_tokens=args.n_predict,
|
||||||
|
)
|
||||||
|
end = time.time()
|
||||||
|
print(f"Inference time: {end-st} s")
|
||||||
|
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||||
|
print("-" * 20, "Input", "-" * 20)
|
||||||
|
print(input_str)
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||||
|
print("-" * 20, "Output", "-" * 20)
|
||||||
|
print(output_str)
|
||||||
|
|
||||||
|
print("-" * 80)
|
||||||
|
print("done")
|
||||||
|
print("success shut down")
|
||||||
|
|
@ -0,0 +1,17 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
from .pipeline_model import *
|
||||||
|
|
@ -0,0 +1,64 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import ctypes
|
||||||
|
import pathlib
|
||||||
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
|
||||||
|
|
||||||
|
def get_shared_lib_info(lib_base_name: str):
|
||||||
|
# Determine the file extension based on the platform
|
||||||
|
if sys.platform.startswith("linux") or sys.platform == "darwin":
|
||||||
|
lib_ext = ".so"
|
||||||
|
elif sys.platform == "win32":
|
||||||
|
lib_ext = ".dll"
|
||||||
|
else:
|
||||||
|
invalidInputError(False, "Unsupported platform.")
|
||||||
|
|
||||||
|
# Construct the paths to the possible shared library names (python/llm/src/ipex-llm/llm/libs)
|
||||||
|
_base_path = pathlib.Path(__file__).parent.parent.parent.resolve()
|
||||||
|
_base_path = _base_path / 'libs'
|
||||||
|
|
||||||
|
lib_path = os.path.join(_base_path, lib_base_name + lib_ext)
|
||||||
|
|
||||||
|
return _base_path, lib_path
|
||||||
|
|
||||||
|
_, _lib_path = get_shared_lib_info("pipeline")
|
||||||
|
|
||||||
|
# Load the library
|
||||||
|
_lib = ctypes.cdll.LoadLibrary(_lib_path)
|
||||||
|
|
||||||
|
_lib.InitLLMPipeline.argtypes = [ctypes.c_int] * 5 + [ctypes.c_char_p] * 5
|
||||||
|
_lib.InitLLMPipeline.restype = ctypes.c_int
|
||||||
|
|
||||||
|
_lib.generate_serve.argtypes = [ctypes.c_int] * 5
|
||||||
|
_lib.generate_serve.restype = ctypes.c_int
|
||||||
|
|
||||||
|
|
||||||
|
def InitLLMPipeline(kv_len: int, num_head: int, head_dim: int, num_layers: int, vocab_size: int,
|
||||||
|
model_weight_dir: str, model_name: str,
|
||||||
|
first_blob_name: str, last_blob_name: str, rest_blob_name: str):
|
||||||
|
return _lib.InitLLMPipeline(kv_len, num_head, head_dim, num_layers, vocab_size,
|
||||||
|
model_weight_dir.encode('utf-8'), model_name.encode('utf-8'),
|
||||||
|
first_blob_name.encode('utf-8'), last_blob_name.encode('utf-8'),
|
||||||
|
rest_blob_name.encode('utf-8'))
|
||||||
|
|
||||||
|
|
||||||
|
def generate_serve(kv_len: int, num_head: int, head_dim: int, num_layers: int,
|
||||||
|
param_n_output: int):
|
||||||
|
_lib.generate_serve(kv_len, num_head, head_dim, num_layers, param_n_output)
|
||||||
|
|
@ -0,0 +1,246 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import time
|
||||||
|
import numpy
|
||||||
|
import warnings
|
||||||
|
import torch
|
||||||
|
import sys
|
||||||
|
import transformers
|
||||||
|
from typing import List
|
||||||
|
from unittest.mock import patch
|
||||||
|
from transformers.dynamic_module_utils import get_imports
|
||||||
|
from .pipeline_cpp import InitLLMPipeline, generate_serve
|
||||||
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
||||||
|
from transformers import GenerationConfig, \
|
||||||
|
LogitsProcessorList, StoppingCriteriaList
|
||||||
|
import threading
|
||||||
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
import os
|
||||||
|
from transformers import PretrainedConfig
|
||||||
|
|
||||||
|
|
||||||
|
def patch_flash_attn_import(filename: str) -> List[str]:
|
||||||
|
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
|
||||||
|
imports = get_imports(filename)
|
||||||
|
if "flash_attn" in imports:
|
||||||
|
imports.remove("flash_attn")
|
||||||
|
return imports
|
||||||
|
|
||||||
|
|
||||||
|
def ignore_argument(kwargs: dict, key: "str"):
|
||||||
|
arg = kwargs.pop(key, None)
|
||||||
|
if arg is not None:
|
||||||
|
warnings.warn(f"argument `{key}={arg}` will be ignored")
|
||||||
|
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
self,
|
||||||
|
inputs: Optional[torch.Tensor] = None,
|
||||||
|
generation_config: Optional[GenerationConfig] = None,
|
||||||
|
logits_processor: Optional[LogitsProcessorList] = None,
|
||||||
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||||||
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None,
|
||||||
|
synced_gpus: Optional[bool] = None,
|
||||||
|
assistant_model: Optional["PreTrainedModel"] = None,
|
||||||
|
streamer: Optional["BaseStreamer"] = None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
new_generate_kwargs = {}
|
||||||
|
for var in ['max_new_tokens', 'attention_mask', 'eos_token_id']:
|
||||||
|
value = kwargs.pop(var, None)
|
||||||
|
if value is not None:
|
||||||
|
new_generate_kwargs[var] = value
|
||||||
|
|
||||||
|
if isinstance(inputs[0], torch.Tensor):
|
||||||
|
numpy_input = inputs[0].numpy()
|
||||||
|
else:
|
||||||
|
numpy_input = inputs[0]
|
||||||
|
input_length = numpy.size(numpy_input)
|
||||||
|
|
||||||
|
new_tokens = new_generate_kwargs['max_new_tokens']
|
||||||
|
invalidInputError(input_length + new_tokens <= self.kv_len + 1,
|
||||||
|
"Input plus output tokens should not exceed max_output_len.")
|
||||||
|
|
||||||
|
# start generate_serve by Thread
|
||||||
|
thread = threading.Thread(target=generate_serve,
|
||||||
|
args=(self.kv_len, self.num_head,
|
||||||
|
self.head_dim, self.num_layers,
|
||||||
|
new_tokens))
|
||||||
|
thread.start()
|
||||||
|
|
||||||
|
in_pipe_path = "\\\\.\\pipe\\llminputpipe"
|
||||||
|
out_pipe_path = "\\\\.\\pipe\\llmoutputpipe"
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
input_pipe = open(in_pipe_path, "wb")
|
||||||
|
except:
|
||||||
|
print('Waiting for input pipe')
|
||||||
|
time.sleep(1)
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
output_pipe = open(out_pipe_path, "rb")
|
||||||
|
except:
|
||||||
|
print('Waiting for output pipe')
|
||||||
|
time.sleep(1)
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
bdata = b''
|
||||||
|
for i in range(0, input_length):
|
||||||
|
d = int(numpy_input[i])
|
||||||
|
bdata = bdata + d.to_bytes(4, sys.byteorder)
|
||||||
|
|
||||||
|
if "eos_token_id" not in new_generate_kwargs:
|
||||||
|
eos = 0xffffffff
|
||||||
|
else:
|
||||||
|
eos = new_generate_kwargs["eos_token_id"]
|
||||||
|
|
||||||
|
bdata = bdata + eos.to_bytes(4, sys.byteorder)
|
||||||
|
|
||||||
|
input_pipe.write(bytearray(bdata))
|
||||||
|
input_pipe.flush()
|
||||||
|
|
||||||
|
buffersize = 4
|
||||||
|
output_tokens = []
|
||||||
|
while True:
|
||||||
|
data = output_pipe.read(buffersize)
|
||||||
|
if len(data) == 0:
|
||||||
|
break
|
||||||
|
token = int.from_bytes(data, sys.byteorder)
|
||||||
|
output_tokens.append(torch.tensor([token]))
|
||||||
|
if streamer is not None:
|
||||||
|
streamer.put(torch.tensor([token]))
|
||||||
|
if token == eos:
|
||||||
|
break
|
||||||
|
|
||||||
|
output = torch.stack(output_tokens, dim=1)
|
||||||
|
if streamer is not None:
|
||||||
|
streamer.end()
|
||||||
|
|
||||||
|
thread.join()
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class NPUModel():
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class _BaseAutoModelClass:
|
||||||
|
HF_MODEL = None
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import)
|
||||||
|
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Load a model from a directory or the HF Hub.
|
||||||
|
The loaded model will run supported OPs on NPU, then run other OPs on CPU.
|
||||||
|
|
||||||
|
Three new arguments are added to extend Hugging Face's from_pretrained method as follows:
|
||||||
|
:param ov_model: boolean value, whether load blob files from specified directory.
|
||||||
|
If it's False, will convert HF model to specified blob format,
|
||||||
|
but which is not supported now. Default to True.
|
||||||
|
:param max_output_len: Maximum context length for whole generation, default to 1024.
|
||||||
|
:param model_name: Name prefix of the model weight bin file.
|
||||||
|
:return: a model instance
|
||||||
|
"""
|
||||||
|
ov_model = kwargs.get("ov_model", True)
|
||||||
|
max_output_len = kwargs.pop("max_output_len", 1024)
|
||||||
|
|
||||||
|
invalidInputError(ov_model,
|
||||||
|
"Original HF model is not supported now.")
|
||||||
|
invalidInputError(os.path.exists(pretrained_model_name_or_path),
|
||||||
|
"This directory does not exist, please double check it.")
|
||||||
|
|
||||||
|
config_json = os.path.join(pretrained_model_name_or_path, "config.json")
|
||||||
|
invalidInputError(os.path.exists(config_json),
|
||||||
|
"config.json is not found in current directory, please double check it.")
|
||||||
|
config = PretrainedConfig.from_json_file(config_json)
|
||||||
|
model = NPUModel()
|
||||||
|
model.kv_len = max_output_len - 1
|
||||||
|
model.num_head = config.num_attention_heads
|
||||||
|
model.head_dim = config.hidden_size // config.num_attention_heads
|
||||||
|
model.num_layers = config.num_hidden_layers
|
||||||
|
model.vocab_size = config.vocab_size
|
||||||
|
|
||||||
|
model_weight_dir = os.path.join(pretrained_model_name_or_path, "model_layer_weights")
|
||||||
|
model_name = kwargs.get("model_name", "Model")
|
||||||
|
first_blob_name = os.path.join(pretrained_model_name_or_path, "first_model.blob")
|
||||||
|
last_blob_name = os.path.join(pretrained_model_name_or_path, "last_model.blob")
|
||||||
|
rest_blob_name = os.path.join(pretrained_model_name_or_path, "rest_model.blob")
|
||||||
|
|
||||||
|
for path in [model_weight_dir, first_blob_name, last_blob_name, rest_blob_name]:
|
||||||
|
invalidInputError(os.path.exists(path),
|
||||||
|
f"{path} is not found in current directory, please double check it.")
|
||||||
|
|
||||||
|
try:
|
||||||
|
res = InitLLMPipeline(model.kv_len, model.num_head, model.head_dim, model.num_layers,
|
||||||
|
model.vocab_size, model_weight_dir, model_name,
|
||||||
|
first_blob_name, last_blob_name, rest_blob_name)
|
||||||
|
except:
|
||||||
|
invalidInputError(False,
|
||||||
|
"False to InitLLMPipeline.")
|
||||||
|
exit(0)
|
||||||
|
|
||||||
|
# patch generate function
|
||||||
|
import types
|
||||||
|
model.generate = types.MethodType(generate, model)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForCausalLM(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForCausalLM
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModel(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModel
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForSpeechSeq2Seq
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForSeq2SeqLM(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForSeq2SeqLM
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForSequenceClassification(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForSequenceClassification
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForMaskedLM(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForMaskedLM
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForQuestionAnswering(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForQuestionAnswering
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForNextSentencePrediction(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForNextSentencePrediction
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForMultipleChoice(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForMultipleChoice
|
||||||
|
|
||||||
|
|
||||||
|
class AutoModelForTokenClassification(_BaseAutoModelClass):
|
||||||
|
HF_Model = transformers.AutoModelForTokenClassification
|
||||||
Loading…
Reference in a new issue