Initial support of NPU level0 Model (#12177)
* first commit to support load dll and init llm pipeline * add init generate * fix style * small updates * fix style and check tokens number
This commit is contained in:
		
							parent
							
								
									ac44e98b7d
								
							
						
					
					
						commit
						4d93bb81fe
					
				
					 4 changed files with 417 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -0,0 +1,90 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
from ipex_llm.transformers.npu_pipeline_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
def get_prompt(message: str, chat_history: list[tuple[str, str]],
 | 
			
		||||
               system_prompt: str) -> str:
 | 
			
		||||
    texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
 | 
			
		||||
    # The first user input is _not_ stripped
 | 
			
		||||
    do_strip = False
 | 
			
		||||
    for user_input, response in chat_history:
 | 
			
		||||
        user_input = user_input.strip() if do_strip else user_input
 | 
			
		||||
        do_strip = True
 | 
			
		||||
        texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
 | 
			
		||||
    message = message.strip() if do_strip else message
 | 
			
		||||
    texts.append(f'{message} [/INST]')
 | 
			
		||||
    return ''.join(texts)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Predict Tokens using `generate()` API for npu model"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--repo-id-or-model-path",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=r"C:\\Llama2-converted-weights\\",
 | 
			
		||||
        help="The folder path of converted model blobs",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
    parser.add_argument("--max-output-len", type=int, default=1024)
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                 ov_model=True,
 | 
			
		||||
                                                 max_output_len=args.max_output_len,
 | 
			
		||||
                                                 model_name="Model70")
 | 
			
		||||
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    DEFAULT_SYSTEM_PROMPT = """\
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
			
		||||
        _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
        print("input length:", len(_input_ids[0]))
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        output = model.generate(
 | 
			
		||||
            _input_ids, max_new_tokens=args.n_predict,
 | 
			
		||||
        )
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        print(f"Inference time: {end-st} s")
 | 
			
		||||
        input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
        print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
        print(input_str)
 | 
			
		||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
        print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    print("success shut down")
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,17 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
from .pipeline_model import *
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,64 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import sys
 | 
			
		||||
import ctypes
 | 
			
		||||
import pathlib
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_shared_lib_info(lib_base_name: str):
 | 
			
		||||
    # Determine the file extension based on the platform
 | 
			
		||||
    if sys.platform.startswith("linux") or sys.platform == "darwin":
 | 
			
		||||
        lib_ext = ".so"
 | 
			
		||||
    elif sys.platform == "win32":
 | 
			
		||||
        lib_ext = ".dll"
 | 
			
		||||
    else:
 | 
			
		||||
        invalidInputError(False, "Unsupported platform.")
 | 
			
		||||
 | 
			
		||||
    # Construct the paths to the possible shared library names (python/llm/src/ipex-llm/llm/libs)
 | 
			
		||||
    _base_path = pathlib.Path(__file__).parent.parent.parent.resolve()
 | 
			
		||||
    _base_path = _base_path / 'libs'
 | 
			
		||||
 | 
			
		||||
    lib_path = os.path.join(_base_path, lib_base_name + lib_ext)
 | 
			
		||||
 | 
			
		||||
    return _base_path, lib_path
 | 
			
		||||
 | 
			
		||||
_, _lib_path = get_shared_lib_info("pipeline")
 | 
			
		||||
 | 
			
		||||
# Load the library
 | 
			
		||||
_lib = ctypes.cdll.LoadLibrary(_lib_path)
 | 
			
		||||
 | 
			
		||||
_lib.InitLLMPipeline.argtypes = [ctypes.c_int] * 5 + [ctypes.c_char_p] * 5
 | 
			
		||||
_lib.InitLLMPipeline.restype = ctypes.c_int
 | 
			
		||||
 | 
			
		||||
_lib.generate_serve.argtypes = [ctypes.c_int] * 5
 | 
			
		||||
_lib.generate_serve.restype = ctypes.c_int
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def InitLLMPipeline(kv_len: int, num_head: int, head_dim: int, num_layers: int, vocab_size: int,
 | 
			
		||||
                    model_weight_dir: str, model_name: str,
 | 
			
		||||
                    first_blob_name: str, last_blob_name: str, rest_blob_name: str):
 | 
			
		||||
    return _lib.InitLLMPipeline(kv_len, num_head, head_dim, num_layers, vocab_size,
 | 
			
		||||
                                model_weight_dir.encode('utf-8'), model_name.encode('utf-8'),
 | 
			
		||||
                                first_blob_name.encode('utf-8'), last_blob_name.encode('utf-8'),
 | 
			
		||||
                                rest_blob_name.encode('utf-8'))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def generate_serve(kv_len: int, num_head: int, head_dim: int, num_layers: int,
 | 
			
		||||
                   param_n_output: int):
 | 
			
		||||
    _lib.generate_serve(kv_len, num_head, head_dim, num_layers, param_n_output)
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,246 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import time
 | 
			
		||||
import numpy
 | 
			
		||||
import warnings
 | 
			
		||||
import torch
 | 
			
		||||
import sys
 | 
			
		||||
import transformers
 | 
			
		||||
from typing import List
 | 
			
		||||
from unittest.mock import patch
 | 
			
		||||
from transformers.dynamic_module_utils import get_imports
 | 
			
		||||
from .pipeline_cpp import InitLLMPipeline, generate_serve
 | 
			
		||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
 | 
			
		||||
from transformers import GenerationConfig, \
 | 
			
		||||
    LogitsProcessorList, StoppingCriteriaList
 | 
			
		||||
import threading
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
import os
 | 
			
		||||
from transformers import PretrainedConfig
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def patch_flash_attn_import(filename: str) -> List[str]:
 | 
			
		||||
    """Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
 | 
			
		||||
    imports = get_imports(filename)
 | 
			
		||||
    if "flash_attn" in imports:
 | 
			
		||||
        imports.remove("flash_attn")
 | 
			
		||||
    return imports
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def ignore_argument(kwargs: dict, key: "str"):
 | 
			
		||||
    arg = kwargs.pop(key, None)
 | 
			
		||||
    if arg is not None:
 | 
			
		||||
        warnings.warn(f"argument `{key}={arg}` will be ignored")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def generate(
 | 
			
		||||
    self,
 | 
			
		||||
    inputs: Optional[torch.Tensor] = None,
 | 
			
		||||
    generation_config: Optional[GenerationConfig] = None,
 | 
			
		||||
    logits_processor: Optional[LogitsProcessorList] = None,
 | 
			
		||||
    stopping_criteria: Optional[StoppingCriteriaList] = None,
 | 
			
		||||
    prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]]=None,
 | 
			
		||||
    synced_gpus: Optional[bool] = None,
 | 
			
		||||
    assistant_model: Optional["PreTrainedModel"] = None,
 | 
			
		||||
    streamer: Optional["BaseStreamer"] = None,
 | 
			
		||||
    **kwargs,
 | 
			
		||||
):
 | 
			
		||||
    new_generate_kwargs = {}
 | 
			
		||||
    for var in ['max_new_tokens', 'attention_mask', 'eos_token_id']:
 | 
			
		||||
        value = kwargs.pop(var, None)
 | 
			
		||||
        if value is not None:
 | 
			
		||||
            new_generate_kwargs[var] = value
 | 
			
		||||
 | 
			
		||||
    if isinstance(inputs[0], torch.Tensor):
 | 
			
		||||
        numpy_input = inputs[0].numpy()
 | 
			
		||||
    else:
 | 
			
		||||
        numpy_input = inputs[0]
 | 
			
		||||
    input_length = numpy.size(numpy_input)
 | 
			
		||||
 | 
			
		||||
    new_tokens = new_generate_kwargs['max_new_tokens']
 | 
			
		||||
    invalidInputError(input_length + new_tokens <= self.kv_len + 1,
 | 
			
		||||
                      "Input plus output tokens should not exceed max_output_len.")
 | 
			
		||||
 | 
			
		||||
    # start generate_serve by Thread
 | 
			
		||||
    thread = threading.Thread(target=generate_serve,
 | 
			
		||||
                              args=(self.kv_len, self.num_head,
 | 
			
		||||
                                    self.head_dim, self.num_layers,
 | 
			
		||||
                                    new_tokens))
 | 
			
		||||
    thread.start()
 | 
			
		||||
 | 
			
		||||
    in_pipe_path = "\\\\.\\pipe\\llminputpipe"
 | 
			
		||||
    out_pipe_path = "\\\\.\\pipe\\llmoutputpipe"
 | 
			
		||||
 | 
			
		||||
    while True:
 | 
			
		||||
        try:
 | 
			
		||||
            input_pipe = open(in_pipe_path, "wb")
 | 
			
		||||
        except:
 | 
			
		||||
            print('Waiting for input pipe')
 | 
			
		||||
            time.sleep(1)
 | 
			
		||||
        else:
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
    while True:
 | 
			
		||||
        try:
 | 
			
		||||
            output_pipe = open(out_pipe_path, "rb")
 | 
			
		||||
        except:
 | 
			
		||||
            print('Waiting for output pipe')
 | 
			
		||||
            time.sleep(1)
 | 
			
		||||
        else:
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
    bdata = b''
 | 
			
		||||
    for i in range(0, input_length):
 | 
			
		||||
        d = int(numpy_input[i])
 | 
			
		||||
        bdata = bdata + d.to_bytes(4, sys.byteorder)
 | 
			
		||||
 | 
			
		||||
    if "eos_token_id" not in new_generate_kwargs:
 | 
			
		||||
        eos = 0xffffffff
 | 
			
		||||
    else:
 | 
			
		||||
        eos = new_generate_kwargs["eos_token_id"]
 | 
			
		||||
 | 
			
		||||
    bdata = bdata + eos.to_bytes(4, sys.byteorder)
 | 
			
		||||
 | 
			
		||||
    input_pipe.write(bytearray(bdata))
 | 
			
		||||
    input_pipe.flush()
 | 
			
		||||
 | 
			
		||||
    buffersize = 4
 | 
			
		||||
    output_tokens = []
 | 
			
		||||
    while True:
 | 
			
		||||
        data = output_pipe.read(buffersize)
 | 
			
		||||
        if len(data) == 0:
 | 
			
		||||
            break
 | 
			
		||||
        token = int.from_bytes(data, sys.byteorder)
 | 
			
		||||
        output_tokens.append(torch.tensor([token]))
 | 
			
		||||
        if streamer is not None:
 | 
			
		||||
            streamer.put(torch.tensor([token]))
 | 
			
		||||
        if token == eos:
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
    output = torch.stack(output_tokens, dim=1)
 | 
			
		||||
    if streamer is not None:
 | 
			
		||||
        streamer.end()
 | 
			
		||||
 | 
			
		||||
    thread.join()
 | 
			
		||||
    return output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class NPUModel():
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class _BaseAutoModelClass:
 | 
			
		||||
    HF_MODEL = None
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    @patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import)
 | 
			
		||||
    def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
 | 
			
		||||
        """
 | 
			
		||||
        Load a model from a directory or the HF Hub.
 | 
			
		||||
        The loaded model will run supported OPs on NPU, then run other OPs on CPU.
 | 
			
		||||
 | 
			
		||||
        Three new arguments are added to extend Hugging Face's from_pretrained method as follows:
 | 
			
		||||
        :param ov_model: boolean value, whether load blob files from specified directory.
 | 
			
		||||
                         If it's False, will convert HF model to specified blob format,
 | 
			
		||||
                         but which is not supported now. Default to True.
 | 
			
		||||
        :param max_output_len: Maximum context length for whole generation, default to 1024.
 | 
			
		||||
        :param model_name: Name prefix of the model weight bin file.
 | 
			
		||||
        :return: a model instance
 | 
			
		||||
        """
 | 
			
		||||
        ov_model = kwargs.get("ov_model", True)
 | 
			
		||||
        max_output_len = kwargs.pop("max_output_len", 1024)
 | 
			
		||||
 | 
			
		||||
        invalidInputError(ov_model,
 | 
			
		||||
                          "Original HF model is not supported now.")
 | 
			
		||||
        invalidInputError(os.path.exists(pretrained_model_name_or_path),
 | 
			
		||||
                          "This directory does not exist, please double check it.")
 | 
			
		||||
 | 
			
		||||
        config_json = os.path.join(pretrained_model_name_or_path, "config.json")
 | 
			
		||||
        invalidInputError(os.path.exists(config_json),
 | 
			
		||||
                          "config.json is not found in current directory, please double check it.")
 | 
			
		||||
        config = PretrainedConfig.from_json_file(config_json)
 | 
			
		||||
        model = NPUModel()
 | 
			
		||||
        model.kv_len = max_output_len - 1
 | 
			
		||||
        model.num_head = config.num_attention_heads
 | 
			
		||||
        model.head_dim = config.hidden_size // config.num_attention_heads
 | 
			
		||||
        model.num_layers = config.num_hidden_layers
 | 
			
		||||
        model.vocab_size = config.vocab_size
 | 
			
		||||
 | 
			
		||||
        model_weight_dir = os.path.join(pretrained_model_name_or_path, "model_layer_weights")
 | 
			
		||||
        model_name = kwargs.get("model_name", "Model")
 | 
			
		||||
        first_blob_name = os.path.join(pretrained_model_name_or_path, "first_model.blob")
 | 
			
		||||
        last_blob_name = os.path.join(pretrained_model_name_or_path, "last_model.blob")
 | 
			
		||||
        rest_blob_name = os.path.join(pretrained_model_name_or_path, "rest_model.blob")
 | 
			
		||||
 | 
			
		||||
        for path in [model_weight_dir, first_blob_name, last_blob_name, rest_blob_name]:
 | 
			
		||||
            invalidInputError(os.path.exists(path),
 | 
			
		||||
                              f"{path} is not found in current directory, please double check it.")
 | 
			
		||||
 | 
			
		||||
        try:
 | 
			
		||||
            res = InitLLMPipeline(model.kv_len, model.num_head, model.head_dim, model.num_layers,
 | 
			
		||||
                                  model.vocab_size, model_weight_dir, model_name,
 | 
			
		||||
                                  first_blob_name, last_blob_name, rest_blob_name)
 | 
			
		||||
        except:
 | 
			
		||||
            invalidInputError(False,
 | 
			
		||||
                              "False to InitLLMPipeline.")
 | 
			
		||||
            exit(0)
 | 
			
		||||
 | 
			
		||||
        # patch generate function
 | 
			
		||||
        import types
 | 
			
		||||
        model.generate = types.MethodType(generate, model)
 | 
			
		||||
        return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForCausalLM(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModelForCausalLM
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModel(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModel
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModelForSpeechSeq2Seq
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForSeq2SeqLM(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModelForSeq2SeqLM
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForSequenceClassification(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModelForSequenceClassification
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForMaskedLM(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModelForMaskedLM
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForQuestionAnswering(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModelForQuestionAnswering
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForNextSentencePrediction(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModelForNextSentencePrediction
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForMultipleChoice(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModelForMultipleChoice
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class AutoModelForTokenClassification(_BaseAutoModelClass):
 | 
			
		||||
    HF_Model = transformers.AutoModelForTokenClassification
 | 
			
		||||
		Loading…
	
		Reference in a new issue