LLM: add Qwen transformers int4 example (#8699)
This commit is contained in:
		
							parent
							
								
									710b9b8982
								
							
						
					
					
						commit
						4c44153584
					
				
					 4 changed files with 138 additions and 0 deletions
				
			
		| 
						 | 
					@ -31,6 +31,7 @@ We may use any Hugging Face Transfomer models on `bigdl-llm`, and the following
 | 
				
			||||||
| StarCoder | [link1](example/transformers/native_int4), [link2](example/transformers/transformers_int4/starcoder) | 
 | 
					| StarCoder | [link1](example/transformers/native_int4), [link2](example/transformers/transformers_int4/starcoder) | 
 | 
				
			||||||
| InternLM  | [link](example/transformers/transformers_int4/internlm)  |
 | 
					| InternLM  | [link](example/transformers/transformers_int4/internlm)  |
 | 
				
			||||||
| Whisper   | [link](example/transformers/transformers_int4/whisper)   |
 | 
					| Whisper   | [link](example/transformers/transformers_int4/whisper)   |
 | 
				
			||||||
 | 
					| Qwen      | [link](example/transformers/transformers_int4/qwen)      |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Working with `bigdl-llm`
 | 
					### Working with `bigdl-llm`
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -19,6 +19,7 @@ You can use BigDL-LLM to run any Huggingface Transformer models with INT4 optimi
 | 
				
			||||||
| StarCoder | [link](starcoder) | 
 | 
					| StarCoder | [link](starcoder) | 
 | 
				
			||||||
| InternLM  | [link](internlm)  |
 | 
					| InternLM  | [link](internlm)  |
 | 
				
			||||||
| Whisper   | [link](whisper)   |
 | 
					| Whisper   | [link](whisper)   |
 | 
				
			||||||
 | 
					| Qwen      | [link](qwen)      |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Recommended Requirements
 | 
					## Recommended Requirements
 | 
				
			||||||
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
 | 
					To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,68 @@
 | 
				
			||||||
 | 
					# Qwen
 | 
				
			||||||
 | 
					In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen models. For illustration purposes, we utilize the [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) as a reference Qwen model.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 0. Requirements
 | 
				
			||||||
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a Qwen model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install bigdl-llm[all] # install bigdl-llm with 'all' option
 | 
				
			||||||
 | 
					pip install tiktoken einops transformers_stream_generator  # additional package required for Qwen-7B-Chat to conduct generation
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Run
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Arguments info:
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen-7B-Chat'`.
 | 
				
			||||||
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
 | 
				
			||||||
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
				
			||||||
 | 
					>
 | 
				
			||||||
 | 
					> Please select the appropriate size of the Qwen model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					```powershell
 | 
				
			||||||
 | 
					python ./generate.py 
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					# set BigDL-Nano env variables
 | 
				
			||||||
 | 
					source bigdl-nano-init
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# e.g. for a server with 48 cores per socket
 | 
				
			||||||
 | 
					export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					numactl -C 0-47 -m 0 python ./generate.py
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 2.3 Sample Output
 | 
				
			||||||
 | 
					#### [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat)
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					<human>AI是什么? <bot>
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					<human>AI是什么? <bot>AI,也称为人工智能,是指计算机科学的一个分支,其目标是创造出能够执行某些任务的智能机器。AI的研究涵盖了机器学习、深度学习
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```log
 | 
				
			||||||
 | 
					Inference time: xxxx s
 | 
				
			||||||
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
 | 
					<human>What is AI? <bot>
 | 
				
			||||||
 | 
					-------------------- Output --------------------
 | 
				
			||||||
 | 
					<human>What is AI? <bot>AI stands for Artificial Intelligence. It refers to the ability of a computer program or machine to perform tasks that typically require
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,68 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# you could tune the prompt based on your own model
 | 
				
			||||||
 | 
					QWEN_PROMPT_FORMAT = "<human>{prompt} <bot>"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Qwen model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-7B-Chat",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the Qwen model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--n-predict', type=int, default=32,
 | 
				
			||||||
 | 
					                        help='Max tokens to predict')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
 | 
					                                                 trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load tokenizer
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        prompt = QWEN_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
 | 
					        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
				
			||||||
 | 
					        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Output', '-'*20)
 | 
				
			||||||
 | 
					        print(output_str)
 | 
				
			||||||
		Loading…
	
		Reference in a new issue