LLM: relax batch check of flash atttention by double check attention mask (#10270)

* relax batch check

* fix

* fix style
This commit is contained in:
Ruonan Wang 2024-02-29 09:39:55 +08:00 committed by GitHub
parent 07f36fbfcc
commit 4b08bc1417
2 changed files with 20 additions and 9 deletions

View file

@ -349,7 +349,7 @@ def llama_attention_forward_4_31_quantized(
cos, sin, position_ids, "llama")
if not self.training and not hidden_states.requires_grad:
fsdp_flag = use_flash_attention(query_states, key_states)
fsdp_flag = use_flash_attention(query_states, key_states, attention_mask)
else:
fsdp_flag = False
if fsdp_flag:
@ -629,7 +629,7 @@ def llama_attention_forward_4_31_original(
past_key_value = (key_states, value_states) if use_cache else None
if not self.training and not hidden_states.requires_grad:
fsdp_flag = use_flash_attention(query_states, key_states)
fsdp_flag = use_flash_attention(query_states, key_states, attention_mask)
else:
fsdp_flag = False
if fsdp_flag:
@ -1068,7 +1068,7 @@ def llama_attention_forward_4_36(
past_key_value.value_cache[self.layer_idx] = value_states
if not self.training and not hidden_states.requires_grad:
fsdp_flag = use_flash_attention(query_states, key_states)
fsdp_flag = use_flash_attention(query_states, key_states, attention_mask)
else:
fsdp_flag = False
if fsdp_flag:

View file

@ -236,7 +236,7 @@ def is_enough_kv_cache_room_4_31(past_key_value, seq_len=1):
(past_key_value[0].size(2) + seq_len) * past_key_value[0].size(3)
def use_flash_attention(query, key):
def use_flash_attention(query, key, attention_mask=None):
# here we support query's shape is always [batch_size, head_num, q_len, head_dim],
# key's shape is always [batch_size, head_num, k_len, head_dim]
invalidInputError(query.dim() == 4,
@ -248,11 +248,6 @@ def use_flash_attention(query, key):
bsz, _, q_len, _ = query.size()
k_len = key.size()[2]
# check whether ipex flash attention can be used
if bsz > 1:
# only use flash attention for batch_size = 1 now
# as flash attention doesn't support attn_mask in ipex 2.1,
# so it will cause output error for padded batch input
return False
if q_len != k_len:
# now only use flash attention for first token
# as it seems have no performance benifit for rest token now
@ -271,6 +266,22 @@ def use_flash_attention(query, key):
if query.dtype not in [torch.float32, torch.float16]:
# only use flash attention for fp32/fp16 input
return False
if bsz > 1:
# as flash attention doesn't support attn_mask in ipex 2.1,
# so it will cause output error for padded batch input
if attention_mask is None:
return True
else:
# TODO: below logic may change for different model
# attention mask shape : [bsz, 1, q_len, k_len]
if attention_mask[0].squeeze()[0, 0].item() != 0:
# first batch contains padding
# otherwise we suppose it should be a upper triangular matrix
# at the same time, the diagonal is also 0
return False
elif not attention_mask.equal(attention_mask[0].repeat(bsz, 1, 1, 1)):
# check whether mask of every batch is the same
return False
return True