[WebUI] Add prompt format and stopping words for Qwen (#10066)
* add prompt format and stopping_words for qwen mdoel * performance optimization * optimize * update * meet comments
This commit is contained in:
parent
0aecd8637b
commit
4b02ff188b
2 changed files with 39 additions and 4 deletions
|
|
@ -41,6 +41,18 @@ class _StopEverythingStoppingCriteria(transformers.StoppingCriteria):
|
|||
return shared.stop_everything
|
||||
|
||||
|
||||
class StopWordsCriteria(transformers.StoppingCriteria):
|
||||
"""Custom `StoppingCriteria` which checks if all generated functions in the batch are completed."""
|
||||
def __init__(self, stop_words, tokenizer):
|
||||
self.stop_words = stop_words
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
def __call__(self, input_ids, scores, **kwargs):
|
||||
"""Returns true if all generated sequences contain any of the end-of-function strings."""
|
||||
text = self.tokenizer.decode(input_ids[-1][-1])
|
||||
return text in self.stop_words
|
||||
|
||||
|
||||
class Stream(transformers.StoppingCriteria):
|
||||
def __init__(self, callback_func=None):
|
||||
self.callback_func = callback_func
|
||||
|
|
|
|||
|
|
@ -35,7 +35,8 @@ import modules.shared as shared
|
|||
from modules.callbacks import (
|
||||
Iteratorize,
|
||||
Stream,
|
||||
_StopEverythingStoppingCriteria
|
||||
_StopEverythingStoppingCriteria,
|
||||
StopWordsCriteria
|
||||
)
|
||||
from modules.extensions import apply_extensions
|
||||
from modules.grammar.grammar_utils import initialize_grammar
|
||||
|
|
@ -331,6 +332,19 @@ def generate_reply_HF(question, original_question, seed, state, stopping_strings
|
|||
if shared.args.deepspeed:
|
||||
generate_params.update({'synced_gpus': True})
|
||||
|
||||
#tune the prompt based on qwen
|
||||
QWEN_PROMPT_FORMAT = """
|
||||
<|im_start|>system
|
||||
You are a helpful assistant.
|
||||
<|im_end|>
|
||||
<|im_start|>user
|
||||
{prompt}
|
||||
<|im_end|>
|
||||
<|im_start|>assistant
|
||||
"""
|
||||
if shared.model.config.model_type == "qwen":
|
||||
question = QWEN_PROMPT_FORMAT.format(prompt=question)
|
||||
|
||||
# Encode the input
|
||||
input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))
|
||||
output = input_ids[0]
|
||||
|
|
@ -346,10 +360,19 @@ def generate_reply_HF(question, original_question, seed, state, stopping_strings
|
|||
generate_params.update({'inputs_embeds': inputs_embeds})
|
||||
|
||||
# Stopping criteria / eos token
|
||||
generate_params['stopping_criteria'] = transformers.StoppingCriteriaList()
|
||||
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
|
||||
generate_params['eos_token_id'] = eos_token_ids
|
||||
generate_params['stopping_criteria'] = transformers.StoppingCriteriaList()
|
||||
generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria())
|
||||
|
||||
if shared.model.config.model_type == "qwen":
|
||||
stopping_words = ["<|endoftext|>", "<|im_end|>", "<|im_start|>"]
|
||||
generate_params['stopping_criteria'].append(StopWordsCriteria(stopping_words, shared.tokenizer))
|
||||
|
||||
for st in state['custom_stopping_strings']:
|
||||
if type(st) is str:
|
||||
stopping_words = [item.strip().strip('"') for item in [state['custom_stopping_strings']][0].split(',')]
|
||||
generate_params['stopping_criteria'].append(StopWordsCriteria(stopping_words, shared.tokenizer))
|
||||
|
||||
|
||||
# Logits processor
|
||||
processor = state.get('logits_processor', LogitsProcessorList([]))
|
||||
|
|
|
|||
Loading…
Reference in a new issue