[NPU] initial support of asym_int4_rtn (#12484)

* initiail support of q4_1

* fix

* fix

* update

* update min to Z1

* update

* fix

* update

* fix style

* fix

* support qwen2 optimize_model=True mp version

* temp save

* fix

* fix style

* replace min with zero

* support split linear for q4_1

* fix lm_head with mixed_precision=True

* fix style

* revert test code

* add down proj back for q4_0

* remove print
This commit is contained in:
Ruonan Wang 2024-12-05 01:40:36 -08:00 committed by GitHub
parent 60bafab855
commit 49ab8974fa
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 264 additions and 81 deletions

View file

@ -52,6 +52,7 @@ ggml_tensor_qtype = {"sym_int4": 2, # q4_0 in ggml
"fp6_k": 30,
"sym_int4_rtn": 31,
"sym_int8_rtn": 32,
"asym_int4_rtn": 33,
}
# mixed precison from llama.cpp

View file

@ -84,8 +84,10 @@ Q5_K = ggml_tensor_qtype["q5_k"]
FP6_K = ggml_tensor_qtype["fp6_k"]
SYM_INT4_RTN = ggml_tensor_qtype["sym_int4_rtn"]
SYM_INT8_RTN = ggml_tensor_qtype["sym_int8_rtn"]
ASYM_INT4_RTN = ggml_tensor_qtype["asym_int4_rtn"]
RTN_DTYPE = {
SYM_INT4_RTN: torch.uint8,
ASYM_INT4_RTN: torch.uint8,
SYM_INT8_RTN: torch.int8,
}
@ -223,12 +225,16 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
f"Last dim of input tensor must be multiple of {QK}")
dst_size = (n // QK) * block_size_in_bytes
if qtype in [SYM_INT8_RTN, SYM_INT4_RTN]:
if qtype in [SYM_INT8_RTN, SYM_INT4_RTN, ASYM_INT4_RTN]:
dst_tensor = torch.empty(dst_size, dtype=RTN_DTYPE[qtype],
device=device)
dst_tensor = dst_tensor.reshape(tensor.shape[0], tensor.shape[-1] // QK)
scale = torch.empty(n // k, dtype=torch.float32,
device=device)
if qtype == ASYM_INT4_RTN:
scale = torch.empty((n // k) * 2, dtype=torch.float32,
device=device)
else:
scale = torch.empty(n // k, dtype=torch.float32,
device=device)
elif qtype == NF4:
# Deepspeed zero3 requires unified dtype,
# thus here uses bfloat16 consistent to other layers
@ -244,7 +250,7 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
hist = (ctypes.c_int64 * 16)()
if qtype not in [IQ2_XXS, IQ2_XS, Q2_K, IQ1_S, Q4_K, Q6_K, Q5_K, FP6_K]:
if qtype in [SYM_INT8_RTN, SYM_INT4_RTN]:
if qtype in [SYM_INT8_RTN, SYM_INT4_RTN, ASYM_INT4_RTN]:
scale_ptr = ctypes.cast(scale.data.data_ptr(), ctypes.POINTER(ctypes.c_float))
if imatrix is None:
ggml.ggml_quantize_tensor_rtn(src, dst, scale_ptr, qtype, n,
@ -269,7 +275,7 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
ggml.ggml_quantize_tensor_with_weights(src, dst, qtype,
n // in_features, in_features,
hist, imatrix)
if qtype in [SYM_INT8_RTN, SYM_INT4_RTN]:
if qtype in [SYM_INT8_RTN, SYM_INT4_RTN, ASYM_INT4_RTN]:
return dst_tensor, scale.type(torch.float16)
else:
return dst_tensor

View file

@ -103,6 +103,7 @@ class _BaseAutoModelClass:
qtype_map = {
"sym_int4": "sym_int4_rtn",
"sym_int8": "sym_int8_rtn",
"asym_int4": "asym_int4_rtn",
}
invalidInputError(
@ -154,7 +155,7 @@ class _BaseAutoModelClass:
f"but got {quantization_group_size}"
)
)
_args = copy.deepcopy(args)
_kwargs = copy.deepcopy(kwargs)
try:
@ -270,6 +271,7 @@ class _BaseAutoModelClass:
with torch.no_grad():
model.config.update({"mixed_precision": mixed_precision})
model.config.update({"group_size": quantization_group_size})
model.config.update({"asym": qtype == "asym_int4_rtn"})
optimize_llm_pre(model, qtype, mixed_precision,
quantization_group_size=quantization_group_size)
cls.load_convert(qtype, model, "cpu", modules_to_not_convert,
@ -416,9 +418,9 @@ class _BaseAutoModelClass:
)
invalidInputError(
qtype in ["sym_int8_rtn", "sym_int4_rtn"],
qtype in ["sym_int8_rtn", "sym_int4_rtn", "asym_int4_rtn"],
f"Unknown bigdl_transformers_low_bit value: {qtype},"
f" expected: sym_int8_rtn, sym_int4_rtn. "
f" expected: sym_int8_rtn, sym_int4_rtn, asym_int4_rtn. "
)
if enable_cpp_backend:

View file

@ -88,10 +88,13 @@ def replace_with_QuantizedLinear(layer, qtype, device, modules_to_not_convert,
from ipex_llm.ggml.quantize import ggml_tensor_qtype
iqtype = ggml_tensor_qtype[qtype]
if isinstance(layer, torch.nn.Linear) and not hasattr(layer, "qtype"):
if qtype == "sym_int4_rtn":
if qtype in ["sym_int4_rtn", "asym_int4_rtn"]:
# workaround for qwen2-7B & int4
if (layer.in_features == 3584 and layer.out_features == 152064) or \
(layer.in_features == 18944 and layer.out_features == 3584):
if (layer.in_features == 3584 and layer.out_features == 152064):
qtype = "sym_int8_rtn"
iqtype = ggml_tensor_qtype[qtype]
if qtype == "sym_int4_rtn":
if (layer.in_features == 18944 and layer.out_features == 3584):
qtype = "sym_int8_rtn"
iqtype = ggml_tensor_qtype[qtype]
enable_scale_search = os.environ.get("IPEX_LLM_NPU_QUANTIZATION_OPT", "0") != "0"
@ -99,8 +102,12 @@ def replace_with_QuantizedLinear(layer, qtype, device, modules_to_not_convert,
iqtype, device=device,
enable_scale_search=enable_scale_search,
imatrix=imatrix)
return QuantizedLinear(qweights, scale, layer.bias,
group_size=group_size)
zero = None
# split scale to scale & zero
if qtype == "asym_int4_rtn":
scale, zero = torch.split(scale, scale.shape[0] // 2)
return QuantizedLinear(qweights, scale, zero, layer.bias,
group_size=group_size, qtype=qtype)
@module_optimization
@ -111,12 +118,21 @@ def replace_with_DequantizedLinear(layer, qtype, device, modules_to_not_convert,
from ipex_llm.ggml.quantize import ggml_tensor_qtype
iqtype = ggml_tensor_qtype[qtype]
if isinstance(layer, torch.nn.Linear) and not hasattr(layer, "qtype"):
if qtype in ["sym_int4_rtn", "asym_int4_rtn"]:
# workaround for qwen2-7B & int4
if (layer.in_features == 3584 and layer.out_features == 152064):
qtype = "sym_int8_rtn"
iqtype = ggml_tensor_qtype[qtype]
enable_scale_search = os.environ.get("IPEX_LLM_NPU_QUANTIZATION_OPT", "0") != "0"
qweights, scale = ggml_convert_qtype(layer.weight.data.to(torch.float32),
iqtype, device=device,
enable_scale_search=enable_scale_search,
imatrix=imatrix)
return DequantizedLinear(qweights, scale, layer.bias)
zero = None
# split scale to scale & zero
if qtype == "asym_int4_rtn":
scale, zero = torch.split(scale, scale.shape[0] // 2)
return DequantizedLinear(qweights, scale, zero, layer.bias, qtype)
@module_optimization

View file

@ -128,7 +128,7 @@ def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision,
from ipex_llm.transformers.npu_models.common import split_linears
if quantization_group_size == 0:
n_splits_linear = 1
if qtype == "sym_int8_rtn":
if qtype in ["sym_int8_rtn", "asym_int4_rtn"]:
# do not split mlp down_proj for Qwen2-7B & sym_int8
n_splits_down_proj = 1
else:
@ -154,18 +154,21 @@ def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision,
# workaround for MiniCPM-2B
new_lm_head_0 = SlicedLMHead(model.lm_head_0.weight, split_num=split_num,
bias=model.lm_head_0.bias, use_split=True,
group_size=quantization_group_size)
group_size=quantization_group_size,
asym=(qtype == "asym_int4_rtn"))
del model.lm_head_0
model.lm_head_0 = new_lm_head_0
new_lm_head_1 = SlicedLMHead(model.lm_head_1.weight, split_num=split_num,
bias=model.lm_head_1.bias, use_split=True,
group_size=quantization_group_size)
group_size=quantization_group_size,
asym=(qtype == "asym_int4_rtn"))
del model.lm_head_1
model.lm_head_1 = new_lm_head_1
else:
new_lm_head = SlicedLMHead(model.lm_head.weight, split_num=split_num,
bias=model.lm_head.bias, use_split=True,
group_size=quantization_group_size)
group_size=quantization_group_size,
asym=(qtype == "asym_int4_rtn"))
del model.lm_head
model.lm_head = new_lm_head
@ -176,11 +179,13 @@ def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision,
# Do not split lm_head and use sym_int8 instead when mixed_precison is True
if quantization_group_size == 0:
# Do not split lm_head and use sym_int8 instead when mixed_precison is True
is_split = (not mixed_precision) and qtype == "sym_int4_rtn"
is_split = (not mixed_precision) and qtype in ["sym_int4_rtn", "asym_int4_rtn"]
split_num = 14 if is_split else 1
new_lm_head = SlicedLMHead(model.lm_head.weight, split_num=split_num,
bias=model.lm_head.bias, use_split=True,
group_size=quantization_group_size)
group_size=quantization_group_size,
asym=((qtype == "asym_int4_rtn") and
(not mixed_precision)))
del model.lm_head
model.lm_head = new_lm_head

View file

@ -129,7 +129,9 @@ class QuantizedLinear(torch.nn.Module):
self,
weight: torch.Tensor,
scale: torch.Tensor,
zero: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
qtype: Optional[str] = "sym_int4_rtn",
group_size: int = 0,
):
"""Initialize the QuantizedLinear class.
@ -137,8 +139,10 @@ class QuantizedLinear(torch.nn.Module):
Args:
weight (torch.Tensor): Linear operation weight
scale (torch.Tensor): Quantization scale
zero (Optional[torch.Tensor], optional): Quantization zero for asym_int4_rtn
bias (Optional[torch.Tensor], optional): Linear operation optional bias.
Defaults to None.
qtype (Optional[str], optional): qtype of this Linear
Raises:
RuntimeError: Quantized weight must be in torch.int8 format
@ -155,14 +159,19 @@ class QuantizedLinear(torch.nn.Module):
)
)
self.outC, self.inC = self.weight.shape
self.zero = None
if group_size != 0:
self.scale = Parameter(scale, requires_grad=False)
self.zero = Parameter(zero, requires_grad=False)
else:
if self.weight.dtype == torch.uint8:
# Int4 we need to double the input channels because weights are compressed
self.inC *= 2
self.scale = Parameter(scale * math.sqrt(self.inC), requires_grad=False)
if zero is not None:
self.zero = Parameter(zero * math.sqrt(self.inC), requires_grad=False)
self.bias = bias
self.qtype = qtype
self.op_id = str(uuid.uuid4())
def forward(self, x: torch.Tensor) -> torch.Tensor:
@ -195,7 +204,8 @@ class QuantizedLinear(torch.nn.Module):
)
)
out = run_matmul(x, self.weight.data, self.scale.data, self.op_id)
zero_data = self.zero.data if self.zero is not None else None
out = run_matmul(x, self.weight.data, self.scale.data, zero_data, self.op_id)
if self.bias is None:
return out
@ -209,14 +219,18 @@ class DequantizedLinear(torch.nn.Module):
self,
weight: torch.Tensor,
scale: torch.Tensor,
zero: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
qtype: Optional[str] = "sym_int4_rtn",
):
"""Initialize the DequantizedLinear class.
Args:
weight (torch.Tensor): Linear operation quantized weight
scale (torch.Tensor): Quantization scale
zero (Optional[torch.Tensor], optional): Quantization zero for asym_int4_rtn
bias (Optional[torch.Tensor], optional): Linear operation optional bias.
Defaults to None.
qtype (Optional[str], optional): qtype of this Linear
Raises:
RuntimeError: Quantized weight must be in torch.int8 format
"""
@ -240,6 +254,9 @@ class DequantizedLinear(torch.nn.Module):
decompressed_weight = combined_weight.view(combined_weight.size(0), -1)
dequantized_weight = decompressed_weight.to(torch.float32) * \
torch.unsqueeze(scale.to(torch.float32), dim=1)
if qtype == "asym_int4_rtn" and zero is not None:
dequantized_weight = dequantized_weight + torch.unsqueeze(zero.to(torch.float32),
dim=1)
self.weight = Parameter(dequantized_weight, requires_grad=False).contiguous()
else:
dequantized_weight = weight.to(torch.float32) * \

View file

@ -36,6 +36,7 @@ class LMHeadLinear(NNFactory):
dtype: np.dtype = np.int8,
use_split: bool = False,
group_size: int = 0,
asym: bool = False,
):
"""Initialize the LMHeadLinear class.
@ -54,11 +55,10 @@ class LMHeadLinear(NNFactory):
self.batch = batch
self.split_num = split_num
if use_split:
input = self.parameter((1, self.batch, self.inC))
res = self.dq_split_linear(input, self.split_num, self.outC, self.inC, wt_dtype=dtype,
scale_factor=(group_size == 0))
scale_factor=(group_size == 0), asym=asym)
else:
input = self.parameter((self.batch, self.inC))
split_size = self.inC // split_num // 2 * 2
@ -69,7 +69,7 @@ class LMHeadLinear(NNFactory):
input_slice = self.slice(input, begin=[0, start_idx],
end=[self.batch, end_idx])
linear_slice = self.linear(input_slice, outC, split_size, bias=False,
wt_dtype=dtype)
wt_dtype=dtype, asym=asym)
if i == 0:
res = linear_slice
else:
@ -109,7 +109,7 @@ class LMHeadLinear(NNFactory):
class SlicedLMHead(nn.Module):
def __init__(self, weight, bias, split_num, use_split=False, group_size=0):
def __init__(self, weight, bias, split_num, use_split=False, group_size=0, asym=False):
super().__init__()
self.split_num = split_num
self.outC, self.inC = weight.shape
@ -128,6 +128,7 @@ class SlicedLMHead(nn.Module):
self.lm_heads.append(new_linear)
self.bias = bias
self.use_split = use_split
self.asym = asym
def forward(self, hidden_states):
if hidden_states.size(0) * hidden_states.size(1) == 1:
@ -162,19 +163,33 @@ class SlicedLMHead(nn.Module):
np_dtype = np.uint8 if self.get_weight_dtype() == torch.uint8 else np.int8
self.fused_lm_head = LMHeadLinear(self.inC, self.outC, 1, self.split_num,
False, "NPU", dtype=np_dtype, use_split=self.use_split,
group_size=self.group_size)
group_size=self.group_size, asym=self.asym)
if self.use_split:
weights = []
scales = []
zeros = []
for i in range(self.split_num):
weights.append(self.lm_heads[i].weight)
scales.append(self.lm_heads[i].scale)
fused_lm_head_weights = (torch.stack(weights, axis=0).numpy(),
torch.stack(scales, axis=0).numpy())
if self.lm_heads[i].zero is not None:
zeros.append(self.lm_heads[i].zero)
if len(zeros):
fused_lm_head_weights = [(torch.stack(weights, axis=0).numpy(),
torch.stack(scales, axis=0).numpy(),
torch.stack(zeros, axis=0).numpy())]
else:
fused_lm_head_weights = [(torch.stack(weights, axis=0).numpy(),
torch.stack(scales, axis=0).numpy())]
else:
fused_lm_head_weights = [(self.lm_heads[i].weight.data.numpy(),
self.lm_heads[i].scale.data.numpy())
for i in range(self.split_num)]
if self.asym:
fused_lm_head_weights = [(self.lm_heads[i].weight.data.numpy(),
self.lm_heads[i].scale.data.numpy(),
self.lm_heads[i].zero.data.numpy())
for i in range(self.split_num)]
else:
fused_lm_head_weights = [(self.lm_heads[i].weight.data.numpy(),
self.lm_heads[i].scale.data.numpy())
for i in range(self.split_num)]
self.fused_lm_head.set_weights(self.lm_heads[0].op_id,
fused_lm_head_weights)

View file

@ -59,9 +59,16 @@ def run_model(
op_args_flatten = []
for w in weights:
if isinstance(w, tuple): # from QuantizedLinear
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
op_args_flatten.append(op_args[-1][0])
op_args_flatten.append(op_args[-1][1])
if len(w) == 2:
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
op_args_flatten.append(op_args[-1][0])
op_args_flatten.append(op_args[-1][1])
else:
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy(),
set_contiguous(w[2]).numpy()))
op_args_flatten.append(op_args[-1][0])
op_args_flatten.append(op_args[-1][1])
op_args_flatten.append(op_args[-1][2])
elif w.dtype in [torch.int8, torch.uint8]: # QuantizedLinear weight
op_args.append(w.numpy())
op_args_flatten.append(op_args[-1])
@ -104,7 +111,7 @@ def run_model(
class LLMBaseNNFactory(NNFactory):
def __init__(self, max_seq_len, transpose_value, dtype, profile=False, device="NPU",
n_splits_linear=1, n_splits_down_proj=1, group_size=0):
n_splits_linear=1, n_splits_down_proj=1, group_size=0, asym=False):
super().__init__(profile, device)
self.cache_parameter_ops = []
self.input_ops = []
@ -117,6 +124,7 @@ class LLMBaseNNFactory(NNFactory):
self.n_splits_linear = n_splits_linear
self.n_splits_down_proj = n_splits_down_proj
self.group_size = group_size
self.asym = asym
def attention(self,
*,
@ -149,7 +157,8 @@ class LLMBaseNNFactory(NNFactory):
wt_dtype=self.dtype,
n_splits=self.n_splits_linear,
scale_factor=(self.group_size == 0),
is_prefill=(mode == "prefill")
is_prefill=(mode == "prefill"),
asym=self.asym
)
key_states = self.linear(
@ -160,7 +169,8 @@ class LLMBaseNNFactory(NNFactory):
wt_dtype=self.dtype,
n_splits=self.n_splits_linear,
scale_factor=(self.group_size == 0),
is_prefill=(mode == "prefill")
is_prefill=(mode == "prefill"),
asym=self.asym
)
value_states = self.linear(
@ -171,7 +181,8 @@ class LLMBaseNNFactory(NNFactory):
wt_dtype=self.dtype,
n_splits=self.n_splits_linear,
scale_factor=(self.group_size == 0),
is_prefill=(mode == "prefill")
is_prefill=(mode == "prefill"),
asym=self.asym
)
if q_bias is not None:
@ -260,7 +271,8 @@ class LLMBaseNNFactory(NNFactory):
attn_output, hidden_size, hidden_size, bias=False, wt_dtype=self.dtype,
n_splits=self.n_splits_linear,
scale_factor=(self.group_size == 0),
is_prefill=(mode == "prefill")
is_prefill=(mode == "prefill"),
asym=self.asym
)
return attn_output, new_key_states, new_value_states
@ -428,13 +440,15 @@ class LLMBaseNNFactory(NNFactory):
hidden_states, self.intermediate_size, self.hidden_size, bias=False,
wt_dtype=self.dtype, n_splits=self.n_splits_linear,
scale_factor=(self.group_size == 0),
is_prefill=(mode == "prefill")
is_prefill=(mode == "prefill"),
asym=self.asym
)
mm2 = self.linear(
hidden_states, self.intermediate_size, self.hidden_size, bias=False,
wt_dtype=self.dtype, n_splits=self.n_splits_linear,
scale_factor=(self.group_size == 0),
is_prefill=(mode == "prefill")
is_prefill=(mode == "prefill"),
asym=self.asym
) # type: ignore[attr-defined]
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
@ -442,7 +456,8 @@ class LLMBaseNNFactory(NNFactory):
mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype,
n_splits=self.n_splits_down_proj,
scale_factor=(self.group_size == 0),
is_prefill=(mode == "prefill")
is_prefill=(mode == "prefill"),
asym=self.asym
)
return hidden_states
@ -558,17 +573,20 @@ class LLMBaseNNFactory(NNFactory):
wt_dtype: npt.DTypeLike = np.float16,
n_splits: int = 1,
scale_factor: bool = True,
is_prefill: bool = False):
is_prefill: bool = False,
asym: bool = False):
if n_splits == 1:
op = super().linear(input_node, output_channels,
input_channels, bias, act_dtype,
wt_dtype, scale_factor=scale_factor)
wt_dtype, scale_factor=scale_factor,
asym=asym)
else:
op = super().dq_split_linear(input_node, n_splits,
output_channels, input_channels,
bias=bias, act_dtype=act_dtype,
wt_dtype=wt_dtype, scale_factor=scale_factor,
is_prefill=is_prefill)
is_prefill=is_prefill,
asym=asym)
self.linear_ops.append(op)
return op
@ -580,10 +598,11 @@ class LLMBaseNNFactory(NNFactory):
act_dtype: npt.DTypeLike = np.float16,
wt_dtype: npt.DTypeLike = np.float16,
scale_factor: bool = False,
is_prefill: bool = False):
is_prefill: bool = False,
asym: bool = False):
op = super().dq_split_linear(input_node, n_splits, output_channels, input_channels,
False, act_dtype, wt_dtype, scale_factor,
is_prefill=is_prefill)
is_prefill=is_prefill, asym=asym)
self.linear_ops.append(op)
return op

View file

@ -97,7 +97,8 @@ class LowBitQwenMultiDecoderlayer(LLMBaseNNFactory):
intermediate_size,
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0
group_size: int = 0,
asym: bool = False,
):
super().__init__(max_seq_len=max_seq_len,
transpose_value=transpose_value,
@ -106,7 +107,8 @@ class LowBitQwenMultiDecoderlayer(LLMBaseNNFactory):
device=device,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size)
group_size=group_size,
asym=asym)
self.max_seq_len = max_seq_len
self.intermediate_size = intermediate_size
self.dtype = dtype
@ -311,6 +313,7 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0,
asym: bool = False,
):
super().__init__()
@ -318,8 +321,10 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
op_parameters = []
for w in parameters:
if isinstance(w, tuple): # from QuantizedLinear
if isinstance(w, tuple) and not asym: # from QuantizedLinear
op_parameters.append((w[0].numpy(), w[1].numpy()))
elif isinstance(w, tuple) and asym: # from QuantizedLinear
op_parameters.append((w[0].numpy(), w[1].numpy(), w[2].numpy()))
elif w.dtype in [torch.int8, torch.uint8]: # QuantizedLinear weight
op_parameters.append(w.numpy())
elif isinstance(w, np.ndarray): # scale
@ -375,7 +380,8 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym,
)
self.backend_decoders.append(decoder)
@ -461,6 +467,7 @@ class FusedQwenLowBitDecoderlayer(torch.nn.Module):
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0,
asym: bool = False,
):
super().__init__()
self.op_parameters = parameters
@ -491,7 +498,8 @@ class FusedQwenLowBitDecoderlayer(torch.nn.Module):
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym
)
self.layer_norm_0 = layer_norm_0
self.layer_norm_1 = layer_norm_1
@ -580,6 +588,7 @@ def run_decode(
layer_indexs = range(layer_start, layer_end)
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
asym = getattr(model.config, "asym", False)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
@ -592,10 +601,17 @@ def run_decode(
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -630,7 +646,8 @@ def run_decode(
do_print=False,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym
)
dist.barrier()
@ -809,6 +826,7 @@ def run_prefill(
layer_indexs = range(layer_start, layer_end)
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
asym = getattr(model.config, "asym", False)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
@ -821,10 +839,17 @@ def run_prefill(
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -850,7 +875,8 @@ def run_prefill(
transpose_value=transpose_value_cache,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym
)
layer_weights.extend(weights)

View file

@ -86,6 +86,7 @@ class LowBitLLMLMHead(LLMBaseNNFactory):
device: str = "NPU",
n_splits: int = 1,
group_size: int = 0,
asym: bool = False
):
super().__init__(max_seq_len=max_seq_len,
transpose_value=transpose_value,
@ -119,6 +120,7 @@ class LowBitLLMLMHead(LLMBaseNNFactory):
hidden_states, self.vocab_size, self.hidden_size, bias=False, wt_dtype=self.dtype,
n_splits=n_splits,
scale_factor=(group_size == 0),
asym=asym
)
# define outputs

View file

@ -201,7 +201,7 @@ def convert_llm(model: torch.nn.Module,
layernorm_const = os.environ.get("IPEX_LLM_NPU_LAYERNORM_CONST", "1") == "1"
if group_size == 0:
n_splits_linear = 1
if qtype == "sym_int8_rtn":
if qtype in ["sym_int8_rtn", "asym_int4_rtn"]:
# do not split mlp down_proj for Qwen2-7B & sym_int8
n_splits_down_proj = 1
else:
@ -434,6 +434,12 @@ def convert_llm_for_deploy(model: torch.nn.Module,
os.mkdir(weight_dir)
layernorm_const = os.environ.get("IPEX_LLM_NPU_LAYERNORM_CONST", "1") == "1"
lm_head_low_bit = getattr(model.config, "bigdl_transformers_low_bit", "sym_int4_rtn")
if not isinstance(model.lm_head, SlicedLMHead):
lm_head_low_bit = model.lm_head.qtype
else:
lm_head_low_bit = model.lm_head.lm_heads[0].qtype
if model.config.model_type == "qwen2":
if group_size == 0:
if model.config.hidden_size == 1536:
@ -456,7 +462,8 @@ def convert_llm_for_deploy(model: torch.nn.Module,
"weight_num": 7,
"weight_idx": 8,
"n_splits_linear": n_splits_linear,
"n_splits_down_proj": n_splits_down_proj}
"n_splits_down_proj": n_splits_down_proj,
"lm_head_low_bit": lm_head_low_bit}
model.config.update(update_dict)
model.config.save_pretrained(save_directory)
@ -517,7 +524,8 @@ def convert_llm_for_deploy(model: torch.nn.Module,
"embedding_post": embedding_post,
"cos_sin_input": cos_sin_input,
"n_splits_linear": n_splits_linear,
"n_splits_down_proj": n_splits_down_proj}
"n_splits_down_proj": n_splits_down_proj,
"lm_head_low_bit": lm_head_low_bit}
model.config.update(update_dict)
model.config.save_pretrained(save_directory)
@ -556,7 +564,8 @@ def convert_llm_for_deploy(model: torch.nn.Module,
"model_type": "minicpm",
"embedding_post": True,
"n_splits_linear": n_splits_linear,
"n_splits_down_proj": n_splits_down_proj}
"n_splits_down_proj": n_splits_down_proj,
"lm_head_low_bit": lm_head_low_bit}
model.config.update(update_dict)
model.config.save_pretrained(save_directory)

View file

@ -31,17 +31,32 @@ def convert_lm_head_and_embedding(model, temp_dir, weight_dir,
model_norm = model.model.norm
lm_head = model.lm_head
lm_head_n_splits = 1
asym = getattr(model.config, "asym", False)
if not isinstance(lm_head, SlicedLMHead):
weights = [(lm_head.weight, lm_head.scale)]
asym = lm_head.qtype == "asym_int4_rtn"
if asym:
weights = [(lm_head.weight, lm_head.scale, lm_head.zero)]
else:
weights = [(lm_head.weight, lm_head.scale)]
else:
lm_heads = lm_head.lm_heads
asym = lm_heads[0].qtype == "asym_int4_rtn"
lm_head_weights = []
scales = []
zeros = []
for l in lm_heads:
lm_head_weights.append(l.weight)
scales.append(l.scale)
weights = [(torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0))]
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights = [(torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0),
torch.stack(zeros, axis=0))]
else:
weights = [(torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0))]
lm_head_n_splits = lm_head.split_num
if isinstance(weights[0], tuple):
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
@ -60,6 +75,7 @@ def convert_lm_head_and_embedding(model, temp_dir, weight_dir,
vocab_size=vocab_size,
n_splits=lm_head_n_splits,
group_size=group_size,
asym=asym
)
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, f"lm_head",
@ -67,9 +83,15 @@ def convert_lm_head_and_embedding(model, temp_dir, weight_dir,
# save weights bins files
if not isinstance(lm_head, SlicedLMHead):
weight_numpy = [
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
]
if not asym:
weight_numpy = [
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
]
else:
weight_numpy = [
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
lm_head.zero.data.numpy()
]
else:
weight_numpy = [v.numpy() for v in weights[0]]
@ -104,6 +126,7 @@ def convert_qwen_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
head_dim = model.model.layers[0].self_attn.head_dim
intermediate_size = model.config.intermediate_size
rms_norm_eps = model.config.rms_norm_eps
asym = getattr(model.config, "asym", False)
from ipex_llm.transformers.npu_models.qwen2_mp import LowBitQwenMultiDecoderlayer
curr_layer = model.model.layers[layer_idx]
@ -117,10 +140,17 @@ def convert_qwen_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
q_bias = attn_layer.q_proj_dq_list.q_proj_dq_0.bias.to(torch.float16)
k_bias = attn_layer.k_proj_dq_list.k_proj_dq_0.bias.to(torch.float16)
@ -164,7 +194,8 @@ def convert_qwen_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym
)
rest_blob_path = update_names_of_IR_and_export_blob(single_decoder,
decoder_name,
@ -188,11 +219,23 @@ def convert_qwen_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
k_bias.data.numpy().tofile(k_bias_bin_file)
v_bias.data.numpy().tofile(v_bias_bin_file)
# 6, 7 are past k/v
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+5+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+5+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
if not asym:
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+3+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+3+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
else:
for idx, (weight, scale, zero) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+3+idx*3}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+3+idx*3+1}.bin")
scale.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+3+idx*3+2}.bin")
zero.numpy().tofile(bin_file)
del single_decoder
@ -207,6 +250,7 @@ def convert_fused_qwen_layer(model, fused_layers, n_splits_linear, n_splits_down
rms_norm_eps = model.config.rms_norm_eps
layer_num = len(model.model.layers)
fused_layer_num = layer_num // fused_layers
asym = getattr(model.config, "asym", False)
from ipex_llm.transformers.npu_models.qwen2_mp import LowBitQwenMultiDecoderlayer
for i in range(fused_layers):
@ -233,10 +277,17 @@ def convert_fused_qwen_layer(model, fused_layers, n_splits_linear, n_splits_down
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -264,12 +315,25 @@ def convert_fused_qwen_layer(model, fused_layers, n_splits_linear, n_splits_down
k_biases[-1].data.numpy().tofile(k_bias_bin_file)
v_biases[-1].data.numpy().tofile(v_bias_bin_file)
# 6, 7 are past k/v
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+3+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+3+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
if not asym:
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+3+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+3+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
else:
for idx, (weight, scale, zero) in enumerate(weights):
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+3+idx*3}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+3+idx*3+1}.bin")
scale.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+3+idx*3+2}.bin")
zero.numpy().tofile(bin_file)
if isinstance(weights[0], tuple):
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
@ -296,7 +360,8 @@ def convert_fused_qwen_layer(model, fused_layers, n_splits_linear, n_splits_down
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym
)
update_names_of_IR_and_export_blob(fused_decoder,
f"decoder_layer_{i}",