diff --git a/python/llm/dev/benchmark/all-in-one/run.py b/python/llm/dev/benchmark/all-in-one/run.py index 865af3f0..1f08ebb0 100644 --- a/python/llm/dev/benchmark/all-in-one/run.py +++ b/python/llm/dev/benchmark/all-in-one/run.py @@ -20,6 +20,7 @@ import torch import time import gc import traceback +import threading import numpy as np from datetime import date @@ -44,6 +45,21 @@ LLAVA_IDS = ['liuhaotian/llava-v1.5-7b'] results = [] excludes = [] +def run_model_in_thread(model, in_out, tokenizer, result, warm_up, num_beams, input_ids, out_len, actual_in_len, num_trials): + for i in range(num_trials + warm_up): + st = time.perf_counter() + output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, + num_beams=num_beams) + torch.xpu.synchronize() + end = time.perf_counter() + output_ids = output_ids.cpu() + print("model generate cost: " + str(end - st)) + output = tokenizer.batch_decode(output_ids) + print(output[0]) + actual_out_len = output_ids.shape[1] - actual_in_len + if i >= warm_up: + result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time, + actual_in_len, actual_out_len]) def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False): # TODO: make a parameter @@ -368,42 +384,27 @@ def run_transformer_int4_gpu(repo_id, result = {} with torch.inference_mode(): for in_out in in_out_pairs: - try: - in_out_len = in_out.split("-") - in_len = int(in_out_len[0]) - out_len = int(in_out_len[1]) - # As different tokenizer has different encodings, - # in_len.txt maybe shorter than we need, - # use much longer context to make sure input length - test_length = min(in_len*2, 8192) - while test_length not in [32, 256, 1024, 2048, 8192]: - test_length = test_length * 2 - input_str = open(f"prompt/{test_length}.txt", 'r').read() - # As different tokenizer has different encodings, - # slice the input_ids to ensure the prompt length is required length. - input_ids = tokenizer.encode(input_str, return_tensors="pt") - input_ids = input_ids[:, :in_len] - true_str = tokenizer.batch_decode(input_ids)[0] - input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu') - actual_in_len = input_ids.shape[1] - result[in_out] = [] - for i in range(num_trials + warm_up): - st = time.perf_counter() - output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, - num_beams=num_beams) - torch.xpu.synchronize() - end = time.perf_counter() - output_ids = output_ids.cpu() - print("model generate cost: " + str(end - st)) - output = tokenizer.batch_decode(output_ids) - print(output[0]) - actual_out_len = output_ids.shape[1] - actual_in_len - if i >= warm_up: - result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time, - actual_in_len, actual_out_len]) - except RuntimeError: - traceback.print_exc() - pass + in_out_len = in_out.split("-") + in_len = int(in_out_len[0]) + out_len = int(in_out_len[1]) + # As different tokenizer has different encodings, + # in_len.txt maybe shorter than we need, + # use much longer context to make sure input length + test_length = min(in_len*2, 8192) + while test_length not in [32, 256, 1024, 2048, 8192]: + test_length = test_length * 2 + input_str = open(f"prompt/{test_length}.txt", 'r').read() + # As different tokenizer has different encodings, + # slice the input_ids to ensure the prompt length is required length. + input_ids = tokenizer.encode(input_str, return_tensors="pt") + input_ids = input_ids[:, :in_len] + true_str = tokenizer.batch_decode(input_ids)[0] + input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu') + actual_in_len = input_ids.shape[1] + result[in_out] = [] + thread = threading.Thread(target=run_model_in_thread, args=(model, in_out, tokenizer, result, warm_up, num_beams, input_ids, out_len, actual_in_len, num_trials)) + thread.start() + thread.join() del model torch.xpu.empty_cache() return result diff --git a/python/llm/test/benchmark/arc-perf-test.yaml b/python/llm/test/benchmark/arc-perf-test.yaml index bd2fab1b..a5fbe22f 100644 --- a/python/llm/test/benchmark/arc-perf-test.yaml +++ b/python/llm/test/benchmark/arc-perf-test.yaml @@ -5,7 +5,7 @@ repo_id: - 'tiiuae/falcon-7b-instruct-with-patch' - 'mosaicml/mpt-7b-chat' - 'redpajama/gptneox-7b-redpajama-bf16' - # - 'bigcode/starcoder-15.5b' + - 'bigcode/starcoder-15.5b' - 'databricks/dolly-v1-6b' - 'databricks/dolly-v2-7b' - 'databricks/dolly-v2-12b' @@ -30,4 +30,3 @@ cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu w exclude: - 'fnlp/moss-moon-003-sft:1024' - 'fnlp/moss-moon-003-sft:2048' - - 'bigscience/bloomz-7b1:2048'