Chatglm support compresskv (#11690)
* chatglm4 support compresskv * fix * fix style * support chatglm2 * fix quantkv conflict * fix style
This commit is contained in:
parent
762ad49362
commit
45c730ff39
2 changed files with 117 additions and 42 deletions
|
|
@ -25,6 +25,9 @@ from ipex_llm.utils.common.log4Error import invalidInputError
|
|||
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, use_sdp_causal
|
||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, \
|
||||
use_sdp_causal, should_use_compresskv, is_enough_kv_cache_room_4_36
|
||||
from ipex_llm.transformers.kv import DynamicCompressCache
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
|
|
@ -83,6 +86,14 @@ def chatglm2_model_forward(
|
|||
input_ids = torch.empty((batch_size, seq_length),
|
||||
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||
|
||||
if use_cache:
|
||||
use_compress_kv = should_use_compresskv(input_ids)
|
||||
use_quantize_kv = use_quantize_kv_cache(self.encoder.layers[0].mlp.dense_h_to_4h,
|
||||
input_ids)
|
||||
if use_compress_kv and not use_quantize_kv and not isinstance(past_key_values,
|
||||
DynamicCompressCache):
|
||||
past_key_values = DynamicCompressCache.from_legacy_cache(past_key_values)
|
||||
|
||||
if full_attention_mask is None:
|
||||
if (attention_mask is not None and not attention_mask.all()) or (
|
||||
past_key_values and seq_length != 1):
|
||||
|
|
@ -157,7 +168,10 @@ def chatglm2_encoder_forward(
|
|||
use_cache: Optional[bool] = True,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
):
|
||||
if not kv_caches:
|
||||
# [CompressKV]
|
||||
use_compress_kv = isinstance(kv_caches, DynamicCompressCache)
|
||||
|
||||
if not kv_caches and not use_compress_kv:
|
||||
kv_caches = [None for _ in range(self.num_layers)]
|
||||
presents = () if use_cache else None
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
|
@ -184,12 +198,15 @@ def chatglm2_encoder_forward(
|
|||
hidden_states,
|
||||
attention_mask,
|
||||
rotary_pos_emb,
|
||||
kv_cache=kv_caches[index],
|
||||
kv_cache=kv_caches if use_compress_kv else kv_caches[index],
|
||||
use_cache=use_cache
|
||||
)
|
||||
hidden_states, kv_cache = layer_ret
|
||||
if use_cache:
|
||||
presents = presents + (kv_cache,)
|
||||
if use_compress_kv:
|
||||
presents = kv_caches
|
||||
else:
|
||||
presents = presents + (kv_cache,)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
|
@ -207,10 +224,16 @@ def chatglm2_attention_forward(
|
|||
# hidden_states: [seq_len, bsz, head_dim]
|
||||
q_len, bsz, _ = hidden_states.size()
|
||||
|
||||
# [CompressKV]
|
||||
use_compresskv = isinstance(kv_cache, DynamicCompressCache)
|
||||
|
||||
# kv_cache: [seq_len, bsz, n_kv_head, head_dim] ->
|
||||
# past_key_value: [bsz, n_kv_head, seq_len, head_dim]
|
||||
past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3),
|
||||
kv_cache[1].permute(1, 2, 0, 3))
|
||||
if use_compresskv:
|
||||
past_key_value = kv_cache
|
||||
else:
|
||||
past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3),
|
||||
kv_cache[1].permute(1, 2, 0, 3))
|
||||
|
||||
n_head = self.num_attention_heads_per_partition
|
||||
n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head
|
||||
|
|
@ -227,7 +250,11 @@ def chatglm2_attention_forward(
|
|||
|
||||
kv_seq_len = key_states.shape[2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[2]
|
||||
if use_compresskv:
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len,
|
||||
self.layer_number - 1)
|
||||
else:
|
||||
kv_seq_len += past_key_value[0].shape[2]
|
||||
|
||||
# IPEX-LLM OPT: fuse rope
|
||||
inv_freq, position_ids = rotary_pos_emb
|
||||
|
|
@ -249,13 +276,23 @@ def chatglm2_attention_forward(
|
|||
|
||||
# IPEX-LLM OPT: kv cache and quantize kv
|
||||
use_quantize_kv = use_quantize_kv_cache(self.query_key_value, query_states)
|
||||
key_states, value_states = update_past_key_value(
|
||||
past_key_value, key_states, value_states,
|
||||
kv_seq_len, use_quantize_kv, hidden_states.device
|
||||
)
|
||||
# past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim]
|
||||
past_key_value = (key_states.permute(2, 0, 1, 3),
|
||||
value_states.permute(2, 0, 1, 3)) if use_cache else None
|
||||
if use_quantize_kv or (not use_compresskv):
|
||||
key_states, value_states = update_past_key_value(
|
||||
past_key_value, key_states, value_states,
|
||||
kv_seq_len, use_quantize_kv, hidden_states.device
|
||||
)
|
||||
# past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim]
|
||||
past_key_value = (key_states.permute(2, 0, 1, 3),
|
||||
value_states.permute(2, 0, 1, 3)) if use_cache else None
|
||||
else:
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
self.config = self.config if hasattr(self, "config") else PretrainedConfig()
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_number - 1)
|
||||
key_states, value_states = past_key_value.update(
|
||||
key_states, value_states, self.layer_number - 1,
|
||||
query_states, attention_mask, n_head // n_kv_head,
|
||||
self.config, enough_kv_room, 256
|
||||
)
|
||||
|
||||
# IPEX-LLM OPT: sdp
|
||||
attn_weights = None
|
||||
|
|
|
|||
|
|
@ -20,9 +20,11 @@
|
|||
import torch
|
||||
from typing import Optional, Tuple, Union
|
||||
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, use_sdp_causal
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, \
|
||||
use_sdp_causal, should_use_compresskv, is_enough_kv_cache_room_4_36
|
||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
|
||||
from ipex_llm.transformers.models.chatglm2 import repeat_kv
|
||||
from ipex_llm.transformers.kv import DynamicCompressCache
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
import math
|
||||
|
||||
|
|
@ -46,6 +48,15 @@ def chatglm4_model_forward(
|
|||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if use_cache:
|
||||
inputs = input_ids if input_ids is not None else inputs_embeds
|
||||
use_compress_kv = should_use_compresskv(inputs)
|
||||
use_quantize_kv = use_quantize_kv_cache(self.encoder.layers[0].mlp.dense_h_to_4h,
|
||||
inputs)
|
||||
if use_compress_kv and not use_quantize_kv and not isinstance(past_key_values,
|
||||
DynamicCompressCache):
|
||||
past_key_values = DynamicCompressCache.from_legacy_cache(past_key_values)
|
||||
|
||||
if inputs_embeds is None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
inputs_embeds = self.embedding(input_ids)
|
||||
|
|
@ -134,9 +145,15 @@ def chatglm4_attention_forward(
|
|||
# hidden_states: [b, sq, h]
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
# [CompressKV]
|
||||
use_compresskv = isinstance(kv_cache, DynamicCompressCache)
|
||||
|
||||
# past_key_value: [bsz, n_kv_head, seq_len, head_dim]
|
||||
past_key_value = None if kv_cache is None else (kv_cache[0],
|
||||
kv_cache[1])
|
||||
if use_compresskv:
|
||||
past_key_value = kv_cache
|
||||
else:
|
||||
past_key_value = None if kv_cache is None else (kv_cache[0],
|
||||
kv_cache[1])
|
||||
|
||||
n_head = self.num_attention_heads_per_partition
|
||||
n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head
|
||||
|
|
@ -153,7 +170,11 @@ def chatglm4_attention_forward(
|
|||
|
||||
kv_seq_len = key_states.shape[2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[2]
|
||||
if use_compresskv:
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len,
|
||||
self.layer_number - 1)
|
||||
else:
|
||||
kv_seq_len += past_key_value[0].shape[2]
|
||||
|
||||
# IPEX-LLM OPT: fuse rope
|
||||
inv_freq, position_ids = rotary_pos_emb
|
||||
|
|
@ -175,19 +196,29 @@ def chatglm4_attention_forward(
|
|||
|
||||
# IPEX-LLM OPT: kv cache and quantize kv
|
||||
use_quantize_kv = use_quantize_kv_cache(self.query_key_value, query_states)
|
||||
key_states, value_states = update_past_key_value(
|
||||
past_key_value, key_states, value_states,
|
||||
kv_seq_len, use_quantize_kv, hidden_states.device
|
||||
)
|
||||
|
||||
if use_cache:
|
||||
if past_key_value is None:
|
||||
past_key_value = torch.cat((key_states.unsqueeze(0).unsqueeze(0),
|
||||
value_states.unsqueeze(0).unsqueeze(0)), dim=1)
|
||||
if use_quantize_kv or (not use_compresskv):
|
||||
key_states, value_states = update_past_key_value(
|
||||
past_key_value, key_states, value_states,
|
||||
kv_seq_len, use_quantize_kv, hidden_states.device
|
||||
)
|
||||
if use_cache:
|
||||
if past_key_value is None:
|
||||
past_key_value = torch.cat((key_states.unsqueeze(0).unsqueeze(0),
|
||||
value_states.unsqueeze(0).unsqueeze(0)), dim=1)
|
||||
else:
|
||||
past_key_value = (key_states, value_states)
|
||||
else:
|
||||
past_key_value = (key_states, value_states)
|
||||
past_key_value = None
|
||||
else:
|
||||
past_key_value = None
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
self.config = self.config if hasattr(self, "config") else PretrainedConfig()
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_number - 1)
|
||||
key_states, value_states = past_key_value.update(
|
||||
key_states, value_states, self.layer_number - 1,
|
||||
query_states, attention_mask, n_head // n_kv_head,
|
||||
self.config, enough_kv_room, 256
|
||||
)
|
||||
|
||||
# IPEX-LLM OPT: sdp
|
||||
attn_weights = None
|
||||
|
|
@ -244,7 +275,10 @@ def chatglm4_encoder_forward(
|
|||
use_cache: Optional[bool] = True,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
):
|
||||
if not kv_caches:
|
||||
# [CompressKV]
|
||||
use_compress_kv = isinstance(kv_caches, DynamicCompressCache)
|
||||
|
||||
if not kv_caches and not use_compress_kv:
|
||||
kv_caches = [None for _ in range(self.num_layers)]
|
||||
presents = () if use_cache else None
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
|
@ -274,26 +308,30 @@ def chatglm4_encoder_forward(
|
|||
hidden_states,
|
||||
attention_mask,
|
||||
rotary_pos_emb,
|
||||
kv_cache=kv_caches[index],
|
||||
kv_cache=kv_caches if use_compress_kv else kv_caches[index],
|
||||
use_cache=use_cache
|
||||
)
|
||||
hidden_states, kv_cache = layer_ret
|
||||
if use_cache:
|
||||
# token by token decoding, use tuple format
|
||||
if kv_caches[0] is not None:
|
||||
presents = presents + (kv_cache,)
|
||||
# prefilling in decoding, use tensor format to save cuda memory
|
||||
if use_compress_kv:
|
||||
presents = kv_caches
|
||||
else:
|
||||
if len(presents) == 0:
|
||||
presents = kv_cache
|
||||
# token by token decoding, use tuple format
|
||||
if kv_caches[0] is not None:
|
||||
presents = presents + (kv_cache,)
|
||||
# prefilling in decoding, use tensor format to save cuda memory
|
||||
else:
|
||||
# bigdl-llm change starts
|
||||
# to fix first token's kv cache error of tensor format in pipeline parallel
|
||||
if isinstance(kv_cache, tuple):
|
||||
kv_cache = torch.tensor(kv_cache,
|
||||
dtype=hidden_states.dtype).to(hidden_states.device)
|
||||
# bigdl-llm change ends
|
||||
presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
|
||||
if len(presents) == 0:
|
||||
presents = kv_cache
|
||||
else:
|
||||
# bigdl-llm change starts
|
||||
# to fix first token's kv cache error of tensor format in pipeline parallel
|
||||
if isinstance(kv_cache, tuple):
|
||||
kv_cache = torch.tensor(
|
||||
kv_cache,
|
||||
dtype=hidden_states.dtype).to(hidden_states.device)
|
||||
# bigdl-llm change ends
|
||||
presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
|
|
|||
Loading…
Reference in a new issue