Chatglm support compresskv (#11690)
* chatglm4 support compresskv * fix * fix style * support chatglm2 * fix quantkv conflict * fix style
This commit is contained in:
parent
762ad49362
commit
45c730ff39
2 changed files with 117 additions and 42 deletions
|
|
@ -25,6 +25,9 @@ from ipex_llm.utils.common.log4Error import invalidInputError
|
||||||
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value
|
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, use_sdp_causal
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, use_sdp_causal
|
||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
|
||||||
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, \
|
||||||
|
use_sdp_causal, should_use_compresskv, is_enough_kv_cache_room_4_36
|
||||||
|
from ipex_llm.transformers.kv import DynamicCompressCache
|
||||||
|
|
||||||
|
|
||||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||||
|
|
@ -83,6 +86,14 @@ def chatglm2_model_forward(
|
||||||
input_ids = torch.empty((batch_size, seq_length),
|
input_ids = torch.empty((batch_size, seq_length),
|
||||||
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
use_compress_kv = should_use_compresskv(input_ids)
|
||||||
|
use_quantize_kv = use_quantize_kv_cache(self.encoder.layers[0].mlp.dense_h_to_4h,
|
||||||
|
input_ids)
|
||||||
|
if use_compress_kv and not use_quantize_kv and not isinstance(past_key_values,
|
||||||
|
DynamicCompressCache):
|
||||||
|
past_key_values = DynamicCompressCache.from_legacy_cache(past_key_values)
|
||||||
|
|
||||||
if full_attention_mask is None:
|
if full_attention_mask is None:
|
||||||
if (attention_mask is not None and not attention_mask.all()) or (
|
if (attention_mask is not None and not attention_mask.all()) or (
|
||||||
past_key_values and seq_length != 1):
|
past_key_values and seq_length != 1):
|
||||||
|
|
@ -157,7 +168,10 @@ def chatglm2_encoder_forward(
|
||||||
use_cache: Optional[bool] = True,
|
use_cache: Optional[bool] = True,
|
||||||
output_hidden_states: Optional[bool] = False,
|
output_hidden_states: Optional[bool] = False,
|
||||||
):
|
):
|
||||||
if not kv_caches:
|
# [CompressKV]
|
||||||
|
use_compress_kv = isinstance(kv_caches, DynamicCompressCache)
|
||||||
|
|
||||||
|
if not kv_caches and not use_compress_kv:
|
||||||
kv_caches = [None for _ in range(self.num_layers)]
|
kv_caches = [None for _ in range(self.num_layers)]
|
||||||
presents = () if use_cache else None
|
presents = () if use_cache else None
|
||||||
if self.gradient_checkpointing and self.training:
|
if self.gradient_checkpointing and self.training:
|
||||||
|
|
@ -184,11 +198,14 @@ def chatglm2_encoder_forward(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
attention_mask,
|
attention_mask,
|
||||||
rotary_pos_emb,
|
rotary_pos_emb,
|
||||||
kv_cache=kv_caches[index],
|
kv_cache=kv_caches if use_compress_kv else kv_caches[index],
|
||||||
use_cache=use_cache
|
use_cache=use_cache
|
||||||
)
|
)
|
||||||
hidden_states, kv_cache = layer_ret
|
hidden_states, kv_cache = layer_ret
|
||||||
if use_cache:
|
if use_cache:
|
||||||
|
if use_compress_kv:
|
||||||
|
presents = kv_caches
|
||||||
|
else:
|
||||||
presents = presents + (kv_cache,)
|
presents = presents + (kv_cache,)
|
||||||
|
|
||||||
if output_hidden_states:
|
if output_hidden_states:
|
||||||
|
|
@ -207,8 +224,14 @@ def chatglm2_attention_forward(
|
||||||
# hidden_states: [seq_len, bsz, head_dim]
|
# hidden_states: [seq_len, bsz, head_dim]
|
||||||
q_len, bsz, _ = hidden_states.size()
|
q_len, bsz, _ = hidden_states.size()
|
||||||
|
|
||||||
|
# [CompressKV]
|
||||||
|
use_compresskv = isinstance(kv_cache, DynamicCompressCache)
|
||||||
|
|
||||||
# kv_cache: [seq_len, bsz, n_kv_head, head_dim] ->
|
# kv_cache: [seq_len, bsz, n_kv_head, head_dim] ->
|
||||||
# past_key_value: [bsz, n_kv_head, seq_len, head_dim]
|
# past_key_value: [bsz, n_kv_head, seq_len, head_dim]
|
||||||
|
if use_compresskv:
|
||||||
|
past_key_value = kv_cache
|
||||||
|
else:
|
||||||
past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3),
|
past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3),
|
||||||
kv_cache[1].permute(1, 2, 0, 3))
|
kv_cache[1].permute(1, 2, 0, 3))
|
||||||
|
|
||||||
|
|
@ -227,6 +250,10 @@ def chatglm2_attention_forward(
|
||||||
|
|
||||||
kv_seq_len = key_states.shape[2]
|
kv_seq_len = key_states.shape[2]
|
||||||
if past_key_value is not None:
|
if past_key_value is not None:
|
||||||
|
if use_compresskv:
|
||||||
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len,
|
||||||
|
self.layer_number - 1)
|
||||||
|
else:
|
||||||
kv_seq_len += past_key_value[0].shape[2]
|
kv_seq_len += past_key_value[0].shape[2]
|
||||||
|
|
||||||
# IPEX-LLM OPT: fuse rope
|
# IPEX-LLM OPT: fuse rope
|
||||||
|
|
@ -249,6 +276,7 @@ def chatglm2_attention_forward(
|
||||||
|
|
||||||
# IPEX-LLM OPT: kv cache and quantize kv
|
# IPEX-LLM OPT: kv cache and quantize kv
|
||||||
use_quantize_kv = use_quantize_kv_cache(self.query_key_value, query_states)
|
use_quantize_kv = use_quantize_kv_cache(self.query_key_value, query_states)
|
||||||
|
if use_quantize_kv or (not use_compresskv):
|
||||||
key_states, value_states = update_past_key_value(
|
key_states, value_states = update_past_key_value(
|
||||||
past_key_value, key_states, value_states,
|
past_key_value, key_states, value_states,
|
||||||
kv_seq_len, use_quantize_kv, hidden_states.device
|
kv_seq_len, use_quantize_kv, hidden_states.device
|
||||||
|
|
@ -256,6 +284,15 @@ def chatglm2_attention_forward(
|
||||||
# past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim]
|
# past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim]
|
||||||
past_key_value = (key_states.permute(2, 0, 1, 3),
|
past_key_value = (key_states.permute(2, 0, 1, 3),
|
||||||
value_states.permute(2, 0, 1, 3)) if use_cache else None
|
value_states.permute(2, 0, 1, 3)) if use_cache else None
|
||||||
|
else:
|
||||||
|
from transformers.configuration_utils import PretrainedConfig
|
||||||
|
self.config = self.config if hasattr(self, "config") else PretrainedConfig()
|
||||||
|
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_number - 1)
|
||||||
|
key_states, value_states = past_key_value.update(
|
||||||
|
key_states, value_states, self.layer_number - 1,
|
||||||
|
query_states, attention_mask, n_head // n_kv_head,
|
||||||
|
self.config, enough_kv_room, 256
|
||||||
|
)
|
||||||
|
|
||||||
# IPEX-LLM OPT: sdp
|
# IPEX-LLM OPT: sdp
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
|
|
|
||||||
|
|
@ -20,9 +20,11 @@
|
||||||
import torch
|
import torch
|
||||||
from typing import Optional, Tuple, Union
|
from typing import Optional, Tuple, Union
|
||||||
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value
|
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, use_sdp_causal
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, \
|
||||||
|
use_sdp_causal, should_use_compresskv, is_enough_kv_cache_room_4_36
|
||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb
|
||||||
from ipex_llm.transformers.models.chatglm2 import repeat_kv
|
from ipex_llm.transformers.models.chatglm2 import repeat_kv
|
||||||
|
from ipex_llm.transformers.kv import DynamicCompressCache
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
import math
|
import math
|
||||||
|
|
||||||
|
|
@ -46,6 +48,15 @@ def chatglm4_model_forward(
|
||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
inputs = input_ids if input_ids is not None else inputs_embeds
|
||||||
|
use_compress_kv = should_use_compresskv(inputs)
|
||||||
|
use_quantize_kv = use_quantize_kv_cache(self.encoder.layers[0].mlp.dense_h_to_4h,
|
||||||
|
inputs)
|
||||||
|
if use_compress_kv and not use_quantize_kv and not isinstance(past_key_values,
|
||||||
|
DynamicCompressCache):
|
||||||
|
past_key_values = DynamicCompressCache.from_legacy_cache(past_key_values)
|
||||||
|
|
||||||
if inputs_embeds is None:
|
if inputs_embeds is None:
|
||||||
batch_size, seq_length = input_ids.shape
|
batch_size, seq_length = input_ids.shape
|
||||||
inputs_embeds = self.embedding(input_ids)
|
inputs_embeds = self.embedding(input_ids)
|
||||||
|
|
@ -134,7 +145,13 @@ def chatglm4_attention_forward(
|
||||||
# hidden_states: [b, sq, h]
|
# hidden_states: [b, sq, h]
|
||||||
bsz, q_len, _ = hidden_states.size()
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
# [CompressKV]
|
||||||
|
use_compresskv = isinstance(kv_cache, DynamicCompressCache)
|
||||||
|
|
||||||
# past_key_value: [bsz, n_kv_head, seq_len, head_dim]
|
# past_key_value: [bsz, n_kv_head, seq_len, head_dim]
|
||||||
|
if use_compresskv:
|
||||||
|
past_key_value = kv_cache
|
||||||
|
else:
|
||||||
past_key_value = None if kv_cache is None else (kv_cache[0],
|
past_key_value = None if kv_cache is None else (kv_cache[0],
|
||||||
kv_cache[1])
|
kv_cache[1])
|
||||||
|
|
||||||
|
|
@ -153,6 +170,10 @@ def chatglm4_attention_forward(
|
||||||
|
|
||||||
kv_seq_len = key_states.shape[2]
|
kv_seq_len = key_states.shape[2]
|
||||||
if past_key_value is not None:
|
if past_key_value is not None:
|
||||||
|
if use_compresskv:
|
||||||
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len,
|
||||||
|
self.layer_number - 1)
|
||||||
|
else:
|
||||||
kv_seq_len += past_key_value[0].shape[2]
|
kv_seq_len += past_key_value[0].shape[2]
|
||||||
|
|
||||||
# IPEX-LLM OPT: fuse rope
|
# IPEX-LLM OPT: fuse rope
|
||||||
|
|
@ -175,11 +196,12 @@ def chatglm4_attention_forward(
|
||||||
|
|
||||||
# IPEX-LLM OPT: kv cache and quantize kv
|
# IPEX-LLM OPT: kv cache and quantize kv
|
||||||
use_quantize_kv = use_quantize_kv_cache(self.query_key_value, query_states)
|
use_quantize_kv = use_quantize_kv_cache(self.query_key_value, query_states)
|
||||||
|
|
||||||
|
if use_quantize_kv or (not use_compresskv):
|
||||||
key_states, value_states = update_past_key_value(
|
key_states, value_states = update_past_key_value(
|
||||||
past_key_value, key_states, value_states,
|
past_key_value, key_states, value_states,
|
||||||
kv_seq_len, use_quantize_kv, hidden_states.device
|
kv_seq_len, use_quantize_kv, hidden_states.device
|
||||||
)
|
)
|
||||||
|
|
||||||
if use_cache:
|
if use_cache:
|
||||||
if past_key_value is None:
|
if past_key_value is None:
|
||||||
past_key_value = torch.cat((key_states.unsqueeze(0).unsqueeze(0),
|
past_key_value = torch.cat((key_states.unsqueeze(0).unsqueeze(0),
|
||||||
|
|
@ -188,6 +210,15 @@ def chatglm4_attention_forward(
|
||||||
past_key_value = (key_states, value_states)
|
past_key_value = (key_states, value_states)
|
||||||
else:
|
else:
|
||||||
past_key_value = None
|
past_key_value = None
|
||||||
|
else:
|
||||||
|
from transformers.configuration_utils import PretrainedConfig
|
||||||
|
self.config = self.config if hasattr(self, "config") else PretrainedConfig()
|
||||||
|
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_number - 1)
|
||||||
|
key_states, value_states = past_key_value.update(
|
||||||
|
key_states, value_states, self.layer_number - 1,
|
||||||
|
query_states, attention_mask, n_head // n_kv_head,
|
||||||
|
self.config, enough_kv_room, 256
|
||||||
|
)
|
||||||
|
|
||||||
# IPEX-LLM OPT: sdp
|
# IPEX-LLM OPT: sdp
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
|
|
@ -244,7 +275,10 @@ def chatglm4_encoder_forward(
|
||||||
use_cache: Optional[bool] = True,
|
use_cache: Optional[bool] = True,
|
||||||
output_hidden_states: Optional[bool] = False,
|
output_hidden_states: Optional[bool] = False,
|
||||||
):
|
):
|
||||||
if not kv_caches:
|
# [CompressKV]
|
||||||
|
use_compress_kv = isinstance(kv_caches, DynamicCompressCache)
|
||||||
|
|
||||||
|
if not kv_caches and not use_compress_kv:
|
||||||
kv_caches = [None for _ in range(self.num_layers)]
|
kv_caches = [None for _ in range(self.num_layers)]
|
||||||
presents = () if use_cache else None
|
presents = () if use_cache else None
|
||||||
if self.gradient_checkpointing and self.training:
|
if self.gradient_checkpointing and self.training:
|
||||||
|
|
@ -274,11 +308,14 @@ def chatglm4_encoder_forward(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
attention_mask,
|
attention_mask,
|
||||||
rotary_pos_emb,
|
rotary_pos_emb,
|
||||||
kv_cache=kv_caches[index],
|
kv_cache=kv_caches if use_compress_kv else kv_caches[index],
|
||||||
use_cache=use_cache
|
use_cache=use_cache
|
||||||
)
|
)
|
||||||
hidden_states, kv_cache = layer_ret
|
hidden_states, kv_cache = layer_ret
|
||||||
if use_cache:
|
if use_cache:
|
||||||
|
if use_compress_kv:
|
||||||
|
presents = kv_caches
|
||||||
|
else:
|
||||||
# token by token decoding, use tuple format
|
# token by token decoding, use tuple format
|
||||||
if kv_caches[0] is not None:
|
if kv_caches[0] is not None:
|
||||||
presents = presents + (kv_cache,)
|
presents = presents + (kv_cache,)
|
||||||
|
|
@ -290,7 +327,8 @@ def chatglm4_encoder_forward(
|
||||||
# bigdl-llm change starts
|
# bigdl-llm change starts
|
||||||
# to fix first token's kv cache error of tensor format in pipeline parallel
|
# to fix first token's kv cache error of tensor format in pipeline parallel
|
||||||
if isinstance(kv_cache, tuple):
|
if isinstance(kv_cache, tuple):
|
||||||
kv_cache = torch.tensor(kv_cache,
|
kv_cache = torch.tensor(
|
||||||
|
kv_cache,
|
||||||
dtype=hidden_states.dtype).to(hidden_states.device)
|
dtype=hidden_states.dtype).to(hidden_states.device)
|
||||||
# bigdl-llm change ends
|
# bigdl-llm change ends
|
||||||
presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
|
presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue