verfiy llava (#9649)

This commit is contained in:
ZehuaCao 2023-12-11 14:26:05 +08:00 committed by GitHub
parent 9f02f96160
commit 45721f3473
2 changed files with 29 additions and 1 deletions

View file

@ -1,21 +1,29 @@
# AWQ
This example shows how to directly run 4-bit AWQ models using BigDL-LLM on Intel CPU.
## Verified Models
- [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
- [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ)
- [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ)
- [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ)
- [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ)
- [llava-v1.5-13B-AWQ](https://huggingface.co/TheBloke/llava-v1.5-13B-AWQ)
- [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ)
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
@ -28,11 +36,13 @@ pip install einops
```
### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
@ -42,15 +52,19 @@ Arguments info:
> Please select the appropriate size of the model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py
```
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-LLM env variables
source bigdl-llm-init
@ -61,7 +75,9 @@ numactl -C 0-47 -m 0 python ./generate.py
```
#### 2.3 Sample Output
#### [TheBloke/Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
```log
Inference time: xxxx s
-------------------- Prompt --------------------

View file

@ -1,21 +1,29 @@
# AWQ
This example shows how to directly run 4-bit AWQ models using BigDL-LLM on Intel GPU.
## Verified Models
- [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
- [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ)
- [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ)
- [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ)
- [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ)
- [llava-v1.5-13B-AWQ](https://huggingface.co/TheBloke/llava-v1.5-13B-AWQ)
- [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ)
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
@ -28,6 +36,7 @@ pip install einops
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
@ -46,6 +55,7 @@ python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROM
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
@ -55,7 +65,9 @@ Arguments info:
> Please select the appropriate size of the Llama2 model based on the capabilities of your machine.
#### 2.3 Sample Output
#### ["TheBloke/Llama-2-7B-Chat-AWQ"](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
#### ["TheBloke/Llama-2-7B-Chat-AWQ"](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
```log
Inference time: xxxx s
-------------------- Prompt --------------------