verfiy llava (#9649)
This commit is contained in:
		
							parent
							
								
									9f02f96160
								
							
						
					
					
						commit
						45721f3473
					
				
					 2 changed files with 29 additions and 1 deletions
				
			
		| 
						 | 
					@ -1,21 +1,29 @@
 | 
				
			||||||
# AWQ
 | 
					# AWQ
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This example shows how to directly run 4-bit AWQ models using BigDL-LLM on Intel CPU.
 | 
					This example shows how to directly run 4-bit AWQ models using BigDL-LLM on Intel CPU.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Verified Models
 | 
					## Verified Models
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
 | 
					- [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
 | 
				
			||||||
- [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ)
 | 
					- [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ)
 | 
				
			||||||
- [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ)
 | 
					- [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ)
 | 
				
			||||||
- [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ)
 | 
					- [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ)
 | 
				
			||||||
- [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ)
 | 
					- [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ)
 | 
				
			||||||
 | 
					- [llava-v1.5-13B-AWQ](https://huggingface.co/TheBloke/llava-v1.5-13B-AWQ)
 | 
				
			||||||
- [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ)
 | 
					- [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Requirements
 | 
					## Requirements
 | 
				
			||||||
 | 
					
 | 
				
			||||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Example: Predict Tokens using `generate()` API
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					
 | 
				
			||||||
In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 1. Install
 | 
					### 1. Install
 | 
				
			||||||
 | 
					
 | 
				
			||||||
We suggest using conda to manage environment:
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
conda create -n llm python=3.9
 | 
					conda create -n llm python=3.9
 | 
				
			||||||
conda activate llm
 | 
					conda activate llm
 | 
				
			||||||
| 
						 | 
					@ -28,11 +36,13 @@ pip install einops
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Run
 | 
					### 2. Run
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
					python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments info:
 | 
					Arguments info:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`.
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`.
 | 
				
			||||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
				
			||||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
| 
						 | 
					@ -42,15 +52,19 @@ Arguments info:
 | 
				
			||||||
> Please select the appropriate size of the model based on the capabilities of your machine.
 | 
					> Please select the appropriate size of the model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 2.1 Client
 | 
					#### 2.1 Client
 | 
				
			||||||
 | 
					
 | 
				
			||||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
					On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```powershell
 | 
					```powershell
 | 
				
			||||||
python ./generate.py 
 | 
					python ./generate.py 
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 2.2 Server
 | 
					#### 2.2 Server
 | 
				
			||||||
 | 
					
 | 
				
			||||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
					For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
E.g. on Linux,
 | 
					E.g. on Linux,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
# set BigDL-LLM env variables
 | 
					# set BigDL-LLM env variables
 | 
				
			||||||
source bigdl-llm-init
 | 
					source bigdl-llm-init
 | 
				
			||||||
| 
						 | 
					@ -61,7 +75,9 @@ numactl -C 0-47 -m 0 python ./generate.py
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 2.3 Sample Output
 | 
					#### 2.3 Sample Output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### [TheBloke/Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
 | 
					#### [TheBloke/Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```log
 | 
					```log
 | 
				
			||||||
Inference time: xxxx s
 | 
					Inference time: xxxx s
 | 
				
			||||||
-------------------- Prompt --------------------
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,21 +1,29 @@
 | 
				
			||||||
# AWQ
 | 
					# AWQ
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This example shows how to directly run 4-bit AWQ models using BigDL-LLM on Intel GPU.
 | 
					This example shows how to directly run 4-bit AWQ models using BigDL-LLM on Intel GPU.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Verified Models
 | 
					## Verified Models
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
 | 
					- [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
 | 
				
			||||||
- [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ)
 | 
					- [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ)
 | 
				
			||||||
- [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ)
 | 
					- [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ)
 | 
				
			||||||
- [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ)
 | 
					- [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ)
 | 
				
			||||||
- [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ)
 | 
					- [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ)
 | 
				
			||||||
 | 
					- [llava-v1.5-13B-AWQ](https://huggingface.co/TheBloke/llava-v1.5-13B-AWQ)
 | 
				
			||||||
- [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ)
 | 
					- [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Requirements
 | 
					## Requirements
 | 
				
			||||||
 | 
					
 | 
				
			||||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
					To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Example: Predict Tokens using `generate()` API
 | 
					## Example: Predict Tokens using `generate()` API
 | 
				
			||||||
 | 
					
 | 
				
			||||||
In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
					In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 1. Install
 | 
					### 1. Install
 | 
				
			||||||
 | 
					
 | 
				
			||||||
We suggest using conda to manage environment:
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
conda create -n llm python=3.9
 | 
					conda create -n llm python=3.9
 | 
				
			||||||
conda activate llm
 | 
					conda activate llm
 | 
				
			||||||
| 
						 | 
					@ -28,6 +36,7 @@ pip install einops
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Configures OneAPI environment variables
 | 
					### 2. Configures OneAPI environment variables
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```bash
 | 
					```bash
 | 
				
			||||||
source /opt/intel/oneapi/setvars.sh
 | 
					source /opt/intel/oneapi/setvars.sh
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -46,6 +55,7 @@ python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROM
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments info:
 | 
					Arguments info:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`.
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`.
 | 
				
			||||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
				
			||||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
					- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
				
			||||||
| 
						 | 
					@ -55,7 +65,9 @@ Arguments info:
 | 
				
			||||||
> Please select the appropriate size of the Llama2 model based on the capabilities of your machine.
 | 
					> Please select the appropriate size of the Llama2 model based on the capabilities of your machine.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 2.3 Sample Output
 | 
					#### 2.3 Sample Output
 | 
				
			||||||
#### ["TheBloke/Llama-2-7B-Chat-AWQ"](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
 | 
					
 | 
				
			||||||
 | 
					#### ["TheBloke/Llama-2-7B-Chat-AWQ"](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```log
 | 
					```log
 | 
				
			||||||
Inference time: xxxx s
 | 
					Inference time: xxxx s
 | 
				
			||||||
-------------------- Prompt --------------------
 | 
					-------------------- Prompt --------------------
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue