verfiy llava (#9649)
This commit is contained in:
parent
9f02f96160
commit
45721f3473
2 changed files with 29 additions and 1 deletions
|
|
@ -1,21 +1,29 @@
|
|||
# AWQ
|
||||
|
||||
This example shows how to directly run 4-bit AWQ models using BigDL-LLM on Intel CPU.
|
||||
|
||||
## Verified Models
|
||||
|
||||
- [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
|
||||
- [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ)
|
||||
- [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ)
|
||||
- [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ)
|
||||
- [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ)
|
||||
- [llava-v1.5-13B-AWQ](https://huggingface.co/TheBloke/llava-v1.5-13B-AWQ)
|
||||
- [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ)
|
||||
|
||||
## Requirements
|
||||
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
|
||||
### 1. Install
|
||||
|
||||
We suggest using conda to manage environment:
|
||||
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
|
|
@ -28,11 +36,13 @@ pip install einops
|
|||
```
|
||||
|
||||
### 2. Run
|
||||
|
||||
```
|
||||
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
|
@ -42,15 +52,19 @@ Arguments info:
|
|||
> Please select the appropriate size of the model based on the capabilities of your machine.
|
||||
|
||||
#### 2.1 Client
|
||||
|
||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||
|
||||
```powershell
|
||||
python ./generate.py
|
||||
```
|
||||
|
||||
#### 2.2 Server
|
||||
|
||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
|
||||
```bash
|
||||
# set BigDL-LLM env variables
|
||||
source bigdl-llm-init
|
||||
|
|
@ -61,7 +75,9 @@ numactl -C 0-47 -m 0 python ./generate.py
|
|||
```
|
||||
|
||||
#### 2.3 Sample Output
|
||||
|
||||
#### [TheBloke/Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
|
||||
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
|
|
|
|||
|
|
@ -1,21 +1,29 @@
|
|||
# AWQ
|
||||
|
||||
This example shows how to directly run 4-bit AWQ models using BigDL-LLM on Intel GPU.
|
||||
|
||||
## Verified Models
|
||||
|
||||
- [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
|
||||
- [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ)
|
||||
- [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ)
|
||||
- [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ)
|
||||
- [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ)
|
||||
- [llava-v1.5-13B-AWQ](https://huggingface.co/TheBloke/llava-v1.5-13B-AWQ)
|
||||
- [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ)
|
||||
|
||||
## Requirements
|
||||
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
|
||||
### 1. Install
|
||||
|
||||
We suggest using conda to manage environment:
|
||||
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
|
|
@ -28,6 +36,7 @@ pip install einops
|
|||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
|
@ -46,6 +55,7 @@ python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROM
|
|||
```
|
||||
|
||||
Arguments info:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
|
@ -55,7 +65,9 @@ Arguments info:
|
|||
> Please select the appropriate size of the Llama2 model based on the capabilities of your machine.
|
||||
|
||||
#### 2.3 Sample Output
|
||||
#### ["TheBloke/Llama-2-7B-Chat-AWQ"](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
|
||||
|
||||
#### ["TheBloke/Llama-2-7B-Chat-AWQ"](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ)
|
||||
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
|
|
|
|||
Loading…
Reference in a new issue