add rwkv v5 attention kernel (#9927)

This commit is contained in:
Yishuo Wang 2024-01-18 10:16:29 +08:00 committed by GitHub
parent 054952f82f
commit 453df868c9
3 changed files with 157 additions and 2 deletions

View file

@ -932,4 +932,12 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model,
module.RwkvSelfAttention,
rwkv_attention_forward)
elif model.config.model_type == "rwkv5":
# rwkv v5
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from bigdl.llm.transformers.models.rwkv5 import rwkv_attention_forward
convert_forward(model,
module.RwkvSelfAttention,
rwkv_attention_forward)
return model

View file

@ -60,8 +60,9 @@ def rwkv_linear_attention_xpu(
time_decay = -torch.exp(time_decay)
# `num_state`, `den_state`, `max_state` will be modified during this call
import linear_q4_0
output = linear_q4_0.rwkv_attention_with_state(
output = linear_q4_0.rwkv_linear_attention_v4(
time_decay,
time_first,
key,
@ -81,7 +82,7 @@ def rwkv_attention_forward(
self,
hidden: torch.Tensor,
state: List[torch.Tensor]=None,
use_cache=False,
use_cache: bool=False,
):
receptance, key, value, state = self.extract_key_value(hidden, state=state)
layer_state = tuple(s[:, :, self.layer_id] for s in state[2:]) if state is not None else None

View file

@ -0,0 +1,146 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://huggingface.co/RWKV/rwkv-5-world-3b/blob/main/modeling_rwkv5.py
# which is licensed under Apache License 2.0:
#
# Copyright 2023 Bo Peng and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F
from typing import List
def rwkv_linear_attention_xpu(
B: int,
H: int,
S: int,
T: int,
hidden: torch.Tensor,
time_decay: torch.Tensor,
time_first: torch.Tensor,
receptance: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
gate: torch.Tensor,
lxw: torch.Tensor,
lxb: torch.Tensor,
ow: torch.nn.Linear,
state: torch.Tensor,
):
key = key.float().view(B, T, H, S).transpose(1, 2)
value = value.float().view(B, T, H, S).transpose(1, 2)
receptance = receptance.float().view(B, T, H, S).transpose(1, 2)
time_decay = torch.exp(-torch.exp(time_decay.float()))
time_first = time_first.float()
state = state.contiguous().float()
# `state` will be modified during this call
import linear_q4_0
out = linear_q4_0.rwkv_linear_attention_v5(
time_decay,
time_first,
receptance,
key,
value,
state,
)
lxw = lxw.float()
lxb = lxb.float()
out = out.reshape(B * T, H * S)
out = F.group_norm(out, num_groups=H, weight=lxw, bias=lxb).reshape(B, T, H * S)
out = out.to(dtype=hidden.dtype) * gate
# out = out @ ow
out = ow(out)
return out, state
def rwkv_attention_forward(
self,
hidden: torch.Tensor,
state: List[torch.Tensor]=None,
use_cache: bool=False,
seq_mode: bool=True,
):
B = hidden.shape[0]
H = self.time_decay.shape[0]
S = hidden.shape[-1] // H
T = hidden.shape[1]
receptance, key, value, gate, state = self.extract_key_value(B, H, S, T, hidden, state=state)
layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
if hidden.device.type == "xpu":
rwkv, layer_state = rwkv_linear_attention_xpu(
B,
H,
S,
T,
hidden,
self.time_decay,
self.time_faaaa,
receptance,
key,
value,
gate,
self.ln_x.weight,
self.ln_x.bias,
self.output,
state=layer_state,
)
else:
from transformers.models.rwkv.modeling_rwkv import rwkv_linear_attention_cpu
rwkv, layer_state = rwkv_linear_attention_cpu(
B,
H,
S,
T,
self.num_attention_heads,
hidden,
self.time_decay,
self.time_faaaa,
receptance,
key,
value,
gate,
self.ln_x.weight,
self.ln_x.bias,
self.output.weight.t(),
state=layer_state,
)
if layer_state is not None:
state[1][:, :, :, :, self.layer_id] = layer_state
return rwkv, state