diff --git a/docs/readthedocs/source/doc/LLM/Quickstart/benchmark_quickstart.md b/docs/readthedocs/source/doc/LLM/Quickstart/benchmark_quickstart.md index 2993ba0a..ba26b770 100644 --- a/docs/readthedocs/source/doc/LLM/Quickstart/benchmark_quickstart.md +++ b/docs/readthedocs/source/doc/LLM/Quickstart/benchmark_quickstart.md @@ -41,6 +41,7 @@ test_api: - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4) cpu_embedding: False # whether put embedding to CPU streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api) +task: 'continuation' # task can be 'continuation', 'QA' and 'summarize' ``` Some parameters in the yaml file that you can configure: @@ -61,6 +62,7 @@ Some parameters in the yaml file that you can configure: - `streaming`: Whether to output in a streaming way (only available for GPU Windows-related test_api). - `use_fp16_torch_dtype`: Whether to use fp16 for the non-linear layer (only available for "pipeline_parallel_gpu" test_api). - `n_gpu`: Number of GPUs to use (only available for "pipeline_parallel_gpu" test_api). +- `task`: There are three tasks: `continuation`, `QA` and `summarize`. `continuation` refers to writing additional content based on prompt. `QA` refers to answering questions based on prompt. `summarize` refers to summarizing the prompt. ```eval_rst diff --git a/python/llm/dev/benchmark/all-in-one/README.md b/python/llm/dev/benchmark/all-in-one/README.md index 78682951..b0149d49 100644 --- a/python/llm/dev/benchmark/all-in-one/README.md +++ b/python/llm/dev/benchmark/all-in-one/README.md @@ -56,13 +56,10 @@ test_api: # - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8) # - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding # - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference - # - "transformer_int4_fp16_lookahead_gpu" # on Intel GPU, transformer-like API, with lookahead, (qtype=int4), (dtype=fp16) cpu_embedding: False # whether put embedding to CPU streaming: False # whether output in streaming way (only available now for gpu win related test_api) use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api) -lookahead: 3 -max_matching_ngram_size: 2 -task: 'continuation' # when test_api is "transformer_int4_fp16_lookahead_gpu", task could be 'QA', 'continuation' or 'summarize' +task: 'continuation' # task can be 'continuation', 'QA' and 'summarize' ``` diff --git a/python/llm/dev/benchmark/all-in-one/config.yaml b/python/llm/dev/benchmark/all-in-one/config.yaml index 0e2bfd80..f7a50116 100644 --- a/python/llm/dev/benchmark/all-in-one/config.yaml +++ b/python/llm/dev/benchmark/all-in-one/config.yaml @@ -35,6 +35,4 @@ test_api: cpu_embedding: False # whether put embedding to CPU streaming: False # whether output in streaming way (only available now for gpu win related test_api) use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api) -lookahead: 3 -max_matching_ngram_size: 2 -task: 'continuation' # when task is 'continuation', the result is without lookahead. When task is 'QA' or 'summarize', the result is with lookahead +task: 'continuation' # task can be 'continuation', 'QA' and 'summarize' diff --git a/python/llm/dev/benchmark/all-in-one/run.py b/python/llm/dev/benchmark/all-in-one/run.py index ff74aa81..c523b782 100644 --- a/python/llm/dev/benchmark/all-in-one/run.py +++ b/python/llm/dev/benchmark/all-in-one/run.py @@ -49,7 +49,7 @@ def run_model_in_thread(model, in_out, tokenizer, result, warm_up, num_beams, in for i in range(num_trials + warm_up): st = time.perf_counter() if lookahead: - output_ids = model.generate(input_ids, lookahead=conf.lookahead, do_sample=False, max_matching_ngram_size=conf.max_matching_ngram_size, max_new_tokens=out_len, + output_ids = model.generate(input_ids, lookahead=3, do_sample=False, max_matching_ngram_size=2, max_new_tokens=out_len, min_new_tokens=out_len, num_beams=num_beams) else: output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len, @@ -106,7 +106,7 @@ def preprocess_prompt(tokenizer, in_len, task): input_ids = tokenizer.encode(input_str, return_tensors="pt") return input_ids -def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False): +def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation'): # TODO: make a parameter result= {} if test_api == 'transformer_int4': @@ -118,7 +118,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, elif test_api == 'transformer_int4_gpu': result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding) elif test_api == 'transformer_int4_fp16_gpu': - result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=True, lookahead=lookahead) + result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=True, lookahead=lookahead, task=task) elif test_api == 'optimize_model_gpu': result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size) elif test_api == 'pytorch_autocast_bf16': @@ -441,7 +441,8 @@ def run_transformer_int4_gpu(repo_id, batch_size, cpu_embedding, fp16=False, - lookahead=False): + lookahead=False, + task='continuation'): from ipex_llm.transformers import AutoModel, AutoModelForCausalLM from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer model_path = get_model_path(repo_id, local_model_hub) @@ -506,7 +507,7 @@ def run_transformer_int4_gpu(repo_id, in_out_len = in_out.split("-") in_len = int(in_out_len[0]) out_len = int(in_out_len[1]) - if conf['task'] == 'continuation': + if task == 'continuation': # As different tokenizer has different encodings, # in_len.txt maybe shorter than we need, # use much longer context to make sure input length @@ -520,8 +521,8 @@ def run_transformer_int4_gpu(repo_id, # slice the input_ids to ensure the prompt length is required length. input_ids = tokenizer.encode(input_str, return_tensors="pt") input_ids = input_ids[:, :in_len] - elif conf['task'] == 'summarize' or conf['task'] == 'QA': - input_ids = preprocess_prompt(tokenizer, in_len, conf['task']) + elif task in ['QA', 'summarize']: + input_ids = preprocess_prompt(tokenizer, in_len, task) true_str = tokenizer.batch_decode(input_ids)[0] input_list = [true_str] * batch_size input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu') @@ -1824,17 +1825,19 @@ def run_pipeline_parallel_gpu(repo_id, if __name__ == '__main__': from omegaconf import OmegaConf - global conf conf = OmegaConf.load(f'{current_dir}/config.yaml') today = date.today() if 'exclude' in conf: excludes = conf['exclude'] streaming = False use_fp16_torch_dtype = False + task = 'continuation' if 'streaming' in conf: streaming = conf['streaming'] if 'use_fp16_torch_dtype' in conf: use_fp16_torch_dtype = conf['use_fp16_torch_dtype'] + if 'task' in conf: + task = conf['task'] lookahead = False import pandas as pd @@ -1854,10 +1857,10 @@ if __name__ == '__main__': model_id_input_batch_size = model_id_input + ':' + str(batch_size) if model_id_input in excludes or model_id_input_batch_size in excludes: in_out_pairs.remove(in_out) - if conf['task'] in ['QA', 'summarize'] and conf['num_beams'] == 1 and batch_size == 1: + if task in ['QA', 'summarize'] and conf['num_beams'] == 1 and batch_size == 1: lookahead = True run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'], - conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead) + conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task) df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)', 'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding', 'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype']) diff --git a/python/llm/test/benchmark/arc-perf-test-batch2.yaml b/python/llm/test/benchmark/arc-perf-test-batch2.yaml index 90a8461d..68e58aad 100644 --- a/python/llm/test/benchmark/arc-perf-test-batch2.yaml +++ b/python/llm/test/benchmark/arc-perf-test-batch2.yaml @@ -35,4 +35,5 @@ exclude: - 'bigcode/starcoder-15.5b-4bit:2048' # - 'databricks/dolly-v2-12b:2048' - 'baichuan-inc/Baichuan2-13B-Chat-4bit:2048' - - 'bigscience/bloomz-7b1:2048' \ No newline at end of file + - 'bigscience/bloomz-7b1:2048' +task: 'continuation' # task can be 'continuation', 'QA' and 'summarize' \ No newline at end of file diff --git a/python/llm/test/benchmark/arc-perf-test.yaml b/python/llm/test/benchmark/arc-perf-test.yaml index 7fbf17d6..4ad6ccde 100644 --- a/python/llm/test/benchmark/arc-perf-test.yaml +++ b/python/llm/test/benchmark/arc-perf-test.yaml @@ -36,3 +36,4 @@ exclude: # - 'fnlp/moss-moon-003-sft-4bit:2048' - 'baichuan-inc/Baichuan2-13B-Chat-4bit:2048' - 'bigscience/bloomz-7b1:2048' +task: 'continuation' # task can be 'continuation', 'QA' and 'summarize' diff --git a/python/llm/test/benchmark/arc-perf-transformers-437-batch2.yaml b/python/llm/test/benchmark/arc-perf-transformers-437-batch2.yaml index 11622638..b7d77161 100644 --- a/python/llm/test/benchmark/arc-perf-transformers-437-batch2.yaml +++ b/python/llm/test/benchmark/arc-perf-transformers-437-batch2.yaml @@ -17,3 +17,4 @@ in_out_pairs: test_api: - "transformer_int4_fp16_gpu" # on Intel GPU cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api) +task: 'continuation' # task can be 'continuation', 'QA' and 'summarize' diff --git a/python/llm/test/benchmark/arc-perf-transformers-437.yaml b/python/llm/test/benchmark/arc-perf-transformers-437.yaml index 6756e126..10c4e07a 100644 --- a/python/llm/test/benchmark/arc-perf-transformers-437.yaml +++ b/python/llm/test/benchmark/arc-perf-transformers-437.yaml @@ -17,3 +17,4 @@ in_out_pairs: test_api: - "transformer_int4_fp16_gpu" # on Intel GPU cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api) +task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'