Support relora in bigdl-llm (#9687)
* init * fix style * update * support resume & update readme * update * update * remove important * add training mode * meet comments
This commit is contained in:
parent
b6222404b8
commit
449b387125
7 changed files with 645 additions and 6 deletions
|
|
@ -1,6 +1,6 @@
|
|||
# Alpaca Finetuning with BigDL-LLM
|
||||
|
||||
This example ports [Alpaca-LoRA](https://github.com/tloen/alpaca-lora/tree/main) to BigDL-LLM (using either [QLoRA](https://arxiv.org/abs/2305.14314) / [QA-LoRA](https://arxiv.org/abs/2309.14717) or [LoRA](https://arxiv.org/abs/2106.09685) algorithm) on [Intel GPU](../../README.md).
|
||||
This example ports [Alpaca-LoRA](https://github.com/tloen/alpaca-lora/tree/main) to BigDL-LLM (using either [QLoRA](https://arxiv.org/abs/2305.14314) / [QA-LoRA](https://arxiv.org/abs/2309.14717) / [LoRA](https://arxiv.org/abs/2106.09685) or [ReLoRA](https://arxiv.org/abs/2307.05695) algorithm) on [Intel GPU](../../README.md).
|
||||
|
||||
### 0. Requirements
|
||||
To run this example with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../README.md#requirements) for more information.
|
||||
|
|
@ -26,7 +26,7 @@ source /opt/intel/oneapi/setvars.sh
|
|||
|
||||
### 3. Finetune
|
||||
|
||||
Now we support three training modes ([QLoRA](https://arxiv.org/abs/2305.14314) / [QA-LoRA](https://arxiv.org/abs/2309.14717) / [LoRA](https://arxiv.org/abs/2106.09685)), to run different mode, just change `training_mode` to `qlora` / `qalora` / `lora` in below script.
|
||||
Now we support four training modes ([QLoRA](https://arxiv.org/abs/2305.14314) / [QA-LoRA](https://arxiv.org/abs/2309.14717) / [LoRA](https://arxiv.org/abs/2106.09685) / [ReLoRA](https://arxiv.org/abs/2307.05695)), to run different mode, just change `training_mode` to `qlora` / `qalora` / `lora` / `relora` in below script.
|
||||
|
||||
Here, we provide example usages on different hardware. Please refer to the appropriate script based on your device:
|
||||
|
||||
|
|
@ -119,6 +119,31 @@ bash lora_finetune_llama2_7b_pvc_1550_1_tile.sh
|
|||
bash lora_finetune_llama2_7b_pvc_1550_4_card.sh
|
||||
```
|
||||
|
||||
#### ReLoRA
|
||||
##### Finetuning LLaMA2-7B on single Arc A770
|
||||
|
||||
```bash
|
||||
bash relora_finetune_llama2_7b_arc_1_card.sh
|
||||
```
|
||||
|
||||
##### Finetuning LLaMA2-7B on two Arc A770
|
||||
|
||||
```bash
|
||||
bash relora_finetune_llama2_7b_arc_2_card.sh
|
||||
```
|
||||
|
||||
##### Finetuning LLaMA2-7B on single Intel Data Center GPU Max 1550
|
||||
|
||||
```bash
|
||||
bash relora_finetune_llama2_7b_pvc_1550_1_card.sh
|
||||
```
|
||||
|
||||
##### Finetuning LLaMA2-7B on four Intel Data Center GPU Max 1550
|
||||
|
||||
```bash
|
||||
bash relora_finetune_llama2_7b_pvc_1550_4_card.sh
|
||||
```
|
||||
|
||||
### 4. (Optional) Resume Training
|
||||
If you fail to complete the whole finetuning process, it is suggested to resume training from a previously saved checkpoint by specifying `resume_from_checkpoint` to the local checkpoint folder as following:**
|
||||
```bash
|
||||
|
|
|
|||
|
|
@ -62,6 +62,12 @@ def get_int_from_env(env_keys, default):
|
|||
return val
|
||||
return default
|
||||
|
||||
def _get_trainer_cls(training_mode):
|
||||
if training_mode == "relora":
|
||||
from bigdl.llm.transformers.relora import ReLoRATrainer
|
||||
return ReLoRATrainer
|
||||
return transformers.Trainer
|
||||
|
||||
local_rank = get_int_from_env(["LOCAL_RANK","MPI_LOCALRANKID"], "0")
|
||||
world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1")
|
||||
port = get_int_from_env(["MASTER_PORT"], 29500)
|
||||
|
|
@ -111,9 +117,15 @@ def train(
|
|||
gradient_checkpointing: bool = False,
|
||||
deepspeed: str = None,
|
||||
training_mode: str = "qlora",
|
||||
# relora params, relora_steps should > 0 if the training mode is `relora`,
|
||||
# Implements the ReLoRA training procedure from https://arxiv.org/abs/2307.05695,
|
||||
# minus the initial full fine-tune.
|
||||
relora_steps: int = 300, # Number of steps per ReLoRA restart
|
||||
relora_warmup_steps: int = 10, # Number of per-restart warmup steps
|
||||
relora_cpu_offload: bool = True, # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
|
||||
):
|
||||
invalidInputError(training_mode in ["qlora", "qalora", "lora"],
|
||||
"Only qlora / qalora / lora are supported for training_mode now.")
|
||||
invalidInputError(training_mode in ["qlora", "qalora", "lora", "relora"],
|
||||
"Only qlora / qalora / lora / relora are supported for training_mode now.")
|
||||
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
|
||||
print(
|
||||
f"Training Alpaca-LoRA model with params:\n"
|
||||
|
|
@ -140,12 +152,18 @@ def train(
|
|||
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
|
||||
f"prompt template: {prompt_template_name}\n"
|
||||
f"training_mode: {training_mode}\n"
|
||||
f"relora_steps: {relora_steps}\n"
|
||||
f"relora_warmup_steps: {relora_warmup_steps}\n"
|
||||
f"relora_cpu_offload: {relora_cpu_offload}\n"
|
||||
)
|
||||
assert (
|
||||
base_model
|
||||
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
|
||||
gradient_accumulation_steps = batch_size // micro_batch_size
|
||||
|
||||
if training_mode == "relora":
|
||||
assert(relora_steps > 0), "The relora_steps should > 0 if the training_mode is relora."
|
||||
|
||||
prompter = Prompter(prompt_template_name)
|
||||
|
||||
device_map = "auto"
|
||||
|
|
@ -297,10 +315,20 @@ def train(
|
|||
# model.is_parallelizable = True
|
||||
# model.model_parallel = True
|
||||
|
||||
trainer = transformers.Trainer(
|
||||
trainer_cls = _get_trainer_cls(training_mode=training_mode)
|
||||
extra_args = {}
|
||||
if training_mode == "relora":
|
||||
extra_args["base_model"] = base_model
|
||||
extra_args["relora_steps"] = relora_steps
|
||||
extra_args["relora_warmup_steps"] = relora_warmup_steps
|
||||
extra_args["relora_cpu_offload"] = relora_cpu_offload
|
||||
extra_args["resume_from_checkpoint"] = resume_from_checkpoint
|
||||
|
||||
trainer = trainer_cls(
|
||||
model=model,
|
||||
train_dataset=train_data,
|
||||
eval_dataset=val_data,
|
||||
**extra_args,
|
||||
args=transformers.TrainingArguments(
|
||||
per_device_train_batch_size=micro_batch_size,
|
||||
gradient_accumulation_steps=gradient_accumulation_steps,
|
||||
|
|
@ -318,7 +346,7 @@ def train(
|
|||
eval_steps=100 if val_set_size > 0 else None,
|
||||
save_steps=100,
|
||||
output_dir=output_dir,
|
||||
save_total_limit=100,
|
||||
save_total_limit=100 if training_mode != "relora" else 4, # relora will save the whole model, here we use 4 to save the disk space.
|
||||
load_best_model_at_end=True if val_set_size > 0 else False,
|
||||
ddp_find_unused_parameters=False if ddp else None,
|
||||
group_by_length=group_by_length,
|
||||
|
|
|
|||
|
|
@ -0,0 +1,24 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# You could also specify `--base_model` to the local path of the huggingface model checkpoint folder and `--data_path` to the local path of the dataset JSON file
|
||||
python ./alpaca_qlora_finetuning.py \
|
||||
--base_model "meta-llama/Llama-2-7b-hf" \
|
||||
--data_path "yahma/alpaca-cleaned" \
|
||||
--output_dir "./bigdl-relora-alpaca" \
|
||||
--relora_steps 300 \
|
||||
--relora_warmup_steps 10 \
|
||||
--training_mode "relora"
|
||||
|
|
@ -0,0 +1,29 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
export MASTER_ADDR=127.0.0.1
|
||||
export OMP_NUM_THREADS=6 # adjust this to 1/4 of total physical cores
|
||||
export FI_PROVIDER=tcp
|
||||
export CCL_ATL_TRANSPORT=ofi
|
||||
|
||||
mpirun -n 2 \
|
||||
python -u ./alpaca_qlora_finetuning.py \
|
||||
--base_model "meta-llama/Llama-2-7b-hf" \
|
||||
--data_path "yahma/alpaca-cleaned" \
|
||||
--output_dir "./bigdl-relora-alpaca" \
|
||||
--relora_steps 300 \
|
||||
--relora_warmup_steps 10 \
|
||||
--training_mode "relora" > training.log
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
export MASTER_ADDR=127.0.0.1
|
||||
export OMP_NUM_THREADS=28 # adjust this to 1/4 of total physical cores
|
||||
export FI_PROVIDER=tcp
|
||||
export CCL_ATL_TRANSPORT=ofi
|
||||
|
||||
mpirun -n 2 \
|
||||
python -u ./alpaca_qlora_finetuning.py \
|
||||
--base_model "meta-llama/Llama-2-7b-hf" \
|
||||
--data_path "yahma/alpaca-cleaned" \
|
||||
--output_dir "./bigdl-relora-alpaca" \
|
||||
--micro_batch_size 8 \
|
||||
--relora_steps 300 \
|
||||
--relora_warmup_steps 10 \
|
||||
--batch_size 128 \
|
||||
--training_mode "relora" > relora_training.log
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
export MASTER_ADDR=127.0.0.1
|
||||
export OMP_NUM_THREADS=28 # adjust this to 1/4 of total physical cores
|
||||
export FI_PROVIDER=tcp
|
||||
export CCL_ATL_TRANSPORT=ofi
|
||||
|
||||
mpirun -n 8 \
|
||||
python -u ./alpaca_qlora_finetuning.py \
|
||||
--base_model "meta-llama/Llama-2-7b-hf" \
|
||||
--data_path "yahma/alpaca-cleaned" \
|
||||
--output_dir "./bigdl-relora-alpaca" \
|
||||
--micro_batch_size 8 \
|
||||
--relora_steps 300 \
|
||||
--relora_warmup_steps 10 \
|
||||
--batch_size 128 \
|
||||
--training_mode "relora" > relora_training.log
|
||||
471
python/llm/src/bigdl/llm/transformers/relora.py
Normal file
471
python/llm/src/bigdl/llm/transformers/relora.py
Normal file
|
|
@ -0,0 +1,471 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This file is adapted from
|
||||
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/relora.py
|
||||
#
|
||||
# Copyright 2023 OpenAccess-AI-Collective axolotl Authors.
|
||||
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from typing import Optional
|
||||
import torch
|
||||
from transformers.trainer import Trainer
|
||||
import glob
|
||||
import json
|
||||
import logging
|
||||
import os.path
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Sequence
|
||||
import peft
|
||||
import safetensors.torch as st
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
from torch.optim.lr_scheduler import LRScheduler
|
||||
from torch.optim.optimizer import Optimizer
|
||||
from transformers import (
|
||||
TrainerCallback,
|
||||
TrainerControl,
|
||||
TrainerState,
|
||||
TrainingArguments,
|
||||
)
|
||||
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
||||
import torch.distributed as dist
|
||||
from bigdl.llm.transformers.qlora import LoraLowBitLinear
|
||||
from bigdl.llm.transformers.low_bit_linear import FP4Params
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
|
||||
LOG = logging.getLogger("bigdl.llm.relora")
|
||||
|
||||
|
||||
class ReLoRATrainer(Trainer):
|
||||
"""
|
||||
Trainer subclass that uses the OneCycleLR scheduler
|
||||
"""
|
||||
|
||||
def __init__(self, *args, base_model="meta-llama/Llama-2-7b-hf",
|
||||
relora_steps=150, relora_warmup_steps=10,
|
||||
relora_cpu_offload=False,
|
||||
resume_from_checkpoint=False, **kwargs):
|
||||
self.lr_scheduler = None
|
||||
self.relora_steps = relora_steps
|
||||
self.relora_warmup_steps = relora_warmup_steps
|
||||
self.relora_cpu_offload = relora_cpu_offload
|
||||
callbacks = kwargs.get("callbacks", [])
|
||||
if self.relora_steps > 0:
|
||||
callbacks.append(
|
||||
ReLoRACallback(relora_steps=relora_steps,
|
||||
relora_cpu_offload=relora_cpu_offload,
|
||||
base_model=base_model,
|
||||
resume_from_checkpoint=resume_from_checkpoint))
|
||||
kwargs["callbacks"] = callbacks
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def create_scheduler(
|
||||
self,
|
||||
num_training_steps: int,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
):
|
||||
optimizer = self.optimizer if optimizer is None else optimizer
|
||||
lr_scheduler = super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
if self.relora_steps:
|
||||
warmup_steps = (
|
||||
self.relora_warmup_steps if self.relora_warmup_steps else 10
|
||||
)
|
||||
self.lr_scheduler = ReLoRAScheduler(
|
||||
optimizer,
|
||||
lr_scheduler,
|
||||
self.relora_steps,
|
||||
warmup_steps,
|
||||
)
|
||||
else:
|
||||
self.lr_scheduler = lr_scheduler
|
||||
|
||||
return self.lr_scheduler
|
||||
|
||||
|
||||
def is_distributed():
|
||||
"""
|
||||
Check if distributed training is initialized.
|
||||
"""
|
||||
return dist.is_available() and dist.is_initialized()
|
||||
|
||||
|
||||
def is_main_process():
|
||||
"""
|
||||
Check if the current process is the main process.
|
||||
If not in distributed mode, always return True.
|
||||
"""
|
||||
if not is_distributed():
|
||||
return True
|
||||
return dist.get_rank() == 0
|
||||
|
||||
|
||||
def reset_optimizer(optimizer: torch.optim.Optimizer):
|
||||
reset_steps = 0
|
||||
reset_keys = {}
|
||||
for group in optimizer.param_groups:
|
||||
for param in group["params"]:
|
||||
param_state = optimizer.state[param]
|
||||
for key in param_state:
|
||||
if "qmap" in key:
|
||||
continue
|
||||
|
||||
if key == "step" and isinstance(param_state[key], int):
|
||||
param_state[key] = 0
|
||||
reset_steps += 1
|
||||
else:
|
||||
param_state[key] = torch.zeros_like(param_state[key])
|
||||
if key not in reset_keys:
|
||||
reset_keys[key] = 1
|
||||
else:
|
||||
reset_keys[key] += 1
|
||||
|
||||
|
||||
class ReLoRACallback(TrainerCallback):
|
||||
"""Callback to merge LoRA weights into the base model and save full-weight checkpoints"""
|
||||
|
||||
def __init__(self, relora_steps=150, relora_cpu_offload=False,
|
||||
base_model="meta-llama/Llama-2-7b-hf", resume_from_checkpoint=None):
|
||||
self.relora_steps = relora_steps
|
||||
self.cpu_offload = relora_cpu_offload
|
||||
self.last_full_model = base_model
|
||||
self.resume_from_checkpoint = resume_from_checkpoint
|
||||
|
||||
if not os.path.exists(self.last_full_model):
|
||||
self.last_full_model = str(Path(snapshot_download(base_model)))
|
||||
|
||||
invalidInputError(os.path.exists(self.last_full_model),
|
||||
"for ReLORA base_model must be a local path")
|
||||
|
||||
self.num_lora_restarts = 0
|
||||
self.need_full_save = False
|
||||
|
||||
def on_train_begin(
|
||||
self,
|
||||
_args: TrainingArguments,
|
||||
_state: TrainerState,
|
||||
control: TrainerControl,
|
||||
model: peft.LoraModel,
|
||||
**_kwargs,
|
||||
):
|
||||
if self.resume_from_checkpoint:
|
||||
weight_path = os.path.join(self.resume_from_checkpoint, "relora")
|
||||
if not os.path.exists(weight_path):
|
||||
LOG.warning(
|
||||
"Resuming ReLoRA from checkpoint, but no full-weight save found"
|
||||
)
|
||||
else:
|
||||
LOG.info(f"Loading adjusted base weights from {weight_path}")
|
||||
load_weight_checkpoint(model, weight_path)
|
||||
return control
|
||||
|
||||
def on_step_begin(
|
||||
self,
|
||||
args: TrainingArguments,
|
||||
state: TrainerState,
|
||||
control: TrainerControl,
|
||||
model: peft.LoraModel,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
**_kwargs,
|
||||
):
|
||||
if state.global_step > 0 and state.global_step % self.relora_steps == 0:
|
||||
checkpoint_folder = os.path.join(
|
||||
args.output_dir,
|
||||
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
|
||||
"relora",
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
merge_and_save(
|
||||
model,
|
||||
self.last_full_model,
|
||||
checkpoint_folder,
|
||||
reinit=True,
|
||||
actually_save=is_main_process(),
|
||||
cpu_offload=self.cpu_offload,
|
||||
)
|
||||
reset_optimizer(optimizer)
|
||||
|
||||
self.last_full_model = checkpoint_folder
|
||||
self.num_lora_restarts += 1
|
||||
return control
|
||||
|
||||
def on_save(
|
||||
self,
|
||||
args: TrainingArguments,
|
||||
state: TrainerState,
|
||||
control: TrainerControl,
|
||||
model: peft.LoraModel,
|
||||
**_kwargs,
|
||||
):
|
||||
checkpoint_folder = os.path.join(
|
||||
args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}", "relora"
|
||||
)
|
||||
if (
|
||||
state.global_step >= self.relora_steps
|
||||
and state.global_step % self.relora_steps != 0
|
||||
):
|
||||
if is_main_process() and self.last_full_model != checkpoint_folder:
|
||||
# ensure the latest full parameter save is in the latest checkpoint
|
||||
# folder, so that automatic pruning of checkpoints does not remove it
|
||||
LOG.info(f"moving last full parameter save to {checkpoint_folder}")
|
||||
os.makedirs(checkpoint_folder, exist_ok=True)
|
||||
chunks = glob.glob(
|
||||
f"{self.last_full_model}/model*.safetensors"
|
||||
) + glob.glob(f"{self.last_full_model}/model*.index.json")
|
||||
for path in chunks:
|
||||
new_path = os.path.abspath(shutil.move(path, checkpoint_folder))
|
||||
try:
|
||||
os.symlink(new_path, path)
|
||||
except OSError:
|
||||
# probably on windows without permission to symlink
|
||||
pass
|
||||
|
||||
self.last_full_model = checkpoint_folder
|
||||
|
||||
return control
|
||||
|
||||
def on_log(
|
||||
self,
|
||||
_args: TrainingArguments,
|
||||
_state: TrainerState,
|
||||
control: TrainerControl,
|
||||
logs: Dict[str, float],
|
||||
**_kwargs,
|
||||
):
|
||||
logs["num_lora_restarts"] = self.num_lora_restarts
|
||||
return control
|
||||
|
||||
def on_train_end(
|
||||
self,
|
||||
args: TrainingArguments,
|
||||
_state: TrainerState,
|
||||
control: TrainerControl,
|
||||
model: peft.LoraModel,
|
||||
**_kwargs,
|
||||
):
|
||||
# perform final merge and save
|
||||
with torch.no_grad():
|
||||
merge_and_save(
|
||||
model,
|
||||
self.last_full_model,
|
||||
args.output_dir,
|
||||
reinit=False,
|
||||
actually_save=is_main_process(),
|
||||
cpu_offload=self.cpu_offload,
|
||||
)
|
||||
# no need to save if unquantized, as finetune.py will call merge_and_unload()
|
||||
return control
|
||||
|
||||
|
||||
class ReLoRAScheduler(LRScheduler):
|
||||
"""Wraps another scheduler to apply per-lora-restart learning rate warmups."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
inner_schedule: LRScheduler,
|
||||
relora_steps: int,
|
||||
warmup_steps: int,
|
||||
min_lr_scale: float = 0.001,
|
||||
) -> None:
|
||||
self.inner_schedule = inner_schedule
|
||||
self.relora_steps = relora_steps
|
||||
self.warmup_steps = warmup_steps
|
||||
self.min_lr_scale = min_lr_scale
|
||||
super().__init__(optimizer, inner_schedule.last_epoch, inner_schedule.verbose)
|
||||
|
||||
def get_lr(self) -> float:
|
||||
self.inner_schedule.last_epoch = self.last_epoch
|
||||
|
||||
original = self.inner_schedule.get_lr()
|
||||
step = self.last_epoch
|
||||
if step < self.relora_steps:
|
||||
scale = 1
|
||||
else:
|
||||
cycle_t = min(1.0, (step % self.relora_steps) / self.warmup_steps)
|
||||
scale = cycle_t * (1 - self.min_lr_scale) + self.min_lr_scale
|
||||
|
||||
if isinstance(original, Sequence):
|
||||
return [lr * scale for lr in original]
|
||||
return original * scale
|
||||
|
||||
|
||||
def sharded_paths(path: str, module_names: List[str]) -> Dict[str, str]:
|
||||
model_name = "model.safetensors"
|
||||
if not os.path.exists(str(Path(path) / model_name)) and not os.path.exists(
|
||||
str(Path(path) / f"{model_name}.index.json")
|
||||
):
|
||||
model_name = "pytorch_model.bin"
|
||||
|
||||
index_path = str(Path(path) / f"{model_name}.index.json")
|
||||
if os.path.exists(index_path):
|
||||
with open(index_path, "r", encoding="utf-8") as file:
|
||||
data = json.load(file)
|
||||
return data["weight_map"]
|
||||
return {(module_name + ".weight"): model_name for module_name in module_names}
|
||||
|
||||
|
||||
def lora_delta_weight(layer: peft.tuners.lora.LoraLayer, device) -> torch.Tensor:
|
||||
if isinstance(layer, LoraLowBitLinear):
|
||||
adapter = layer.active_adapter
|
||||
return (
|
||||
peft.utils.transpose(
|
||||
layer.lora_B[adapter].weight.detach().to(device)
|
||||
@ layer.lora_A[adapter].weight.detach().to(device),
|
||||
getattr(layer, "fan_in_fan_out", False),
|
||||
)
|
||||
* layer.scaling[adapter]
|
||||
)
|
||||
|
||||
return layer.get_delta_weight().to(device)
|
||||
|
||||
|
||||
def find_lora_modules(model: peft.LoraModel) -> Dict[str, peft.tuners.lora.LoraLayer]:
|
||||
modules: Dict[str, peft.tuners.lora.LoraLayer] = {}
|
||||
|
||||
key_list = [key for key, _ in model.model.named_modules() if "lora" not in key]
|
||||
for key in key_list:
|
||||
try:
|
||||
# pylint: disable=protected-access
|
||||
_parent, target, _target_name = peft.utils._get_submodules(model.model, key)
|
||||
except AttributeError:
|
||||
continue
|
||||
|
||||
if isinstance(target, peft.tuners.lora.LoraLayer):
|
||||
modules[key] = target
|
||||
|
||||
return modules
|
||||
|
||||
|
||||
def update_weights(
|
||||
target: peft.tuners.lora.LoraLayer, new_weight: torch.Tensor, reinit: bool, device
|
||||
):
|
||||
if reinit:
|
||||
for adapter_name in target.lora_A:
|
||||
target.reset_lora_parameters(adapter_name)
|
||||
for adapter_name in target.lora_embedding_A:
|
||||
target.reset_lora_parameters(adapter_name)
|
||||
|
||||
if isinstance(target, LoraLowBitLinear):
|
||||
# LOG.info(f"new fp4params {device}, {target.weight.data}, {target.weight.data.device}")
|
||||
new_low_bit_params = FP4Params(new_weight.cpu(),
|
||||
qtype=target.qtype).to("cpu")
|
||||
new_low_bit_params = new_low_bit_params.to(device=device)
|
||||
target._parameters['weight'] = new_low_bit_params
|
||||
|
||||
|
||||
def merge_and_save(
|
||||
model: peft.LoraModel,
|
||||
model_src: str,
|
||||
model_dst: str,
|
||||
reinit: bool = False,
|
||||
cpu_offload: bool = False,
|
||||
actually_save: bool = True,
|
||||
):
|
||||
modules = find_lora_modules(model)
|
||||
|
||||
os.makedirs(model_dst, exist_ok=True)
|
||||
shard_paths = sharded_paths(model_src, modules.keys())
|
||||
out_shard_paths = {}
|
||||
|
||||
unique_shards = list(set(shard_paths.values()))
|
||||
for shard_path in unique_shards:
|
||||
out_tensors = {}
|
||||
if shard_path.endswith(".safetensors"):
|
||||
in_tensors = st.load_file(str(Path(model_src) / shard_path))
|
||||
else:
|
||||
in_tensors = torch.load(Path(model_src) / shard_path)
|
||||
if "state_dict" in in_tensors:
|
||||
in_tensors = in_tensors["state_dict"]
|
||||
|
||||
LOG.info(f"load from {model_src}, {shard_path}")
|
||||
|
||||
for module_name, target in modules.items():
|
||||
key = module_name + ".weight"
|
||||
if key not in shard_paths or shard_paths[key] != shard_path:
|
||||
continue
|
||||
|
||||
orig_weight = in_tensors[key].float()
|
||||
old_dev = target.weight.data.device
|
||||
math_dev = "cpu" if cpu_offload else old_dev
|
||||
|
||||
delta_weight = lora_delta_weight(target, math_dev).float()
|
||||
new_weight = orig_weight.to(math_dev) + delta_weight
|
||||
del delta_weight
|
||||
|
||||
if actually_save:
|
||||
out_tensors[key] = new_weight.half().cpu()
|
||||
|
||||
update_weights(target, new_weight, reinit=reinit, device=old_dev)
|
||||
|
||||
if actually_save:
|
||||
out_shard_name = shard_path
|
||||
if out_shard_name.startswith("pytorch_model"):
|
||||
out_shard_name = (
|
||||
out_shard_name.replace("pytorch_model", "model").rstrip(".bin")
|
||||
+ ".safetensors"
|
||||
)
|
||||
|
||||
for module_name in in_tensors:
|
||||
if module_name not in out_tensors:
|
||||
out_tensors[module_name] = in_tensors[module_name].half()
|
||||
out_shard_paths[module_name] = out_shard_name
|
||||
|
||||
shard_fn = str(Path(model_dst) / out_shard_name)
|
||||
LOG.info(f"saving tensors to {shard_fn}")
|
||||
st.save_file(out_tensors, shard_fn, metadata={"format": "pt"})
|
||||
|
||||
del in_tensors
|
||||
del out_tensors
|
||||
torch.xpu.empty_cache()
|
||||
|
||||
if actually_save and len(unique_shards) > 1:
|
||||
with open(
|
||||
str(Path(model_dst, "model.safetensors.index.json")), "w", encoding="utf-8"
|
||||
) as file:
|
||||
json.dump({"metadata": {}, "weight_map": out_shard_paths}, file)
|
||||
|
||||
|
||||
def load_weight_checkpoint(model: peft.LoraModel, checkpoint_path: str):
|
||||
modules = find_lora_modules(model)
|
||||
shard_paths = sharded_paths(checkpoint_path, modules.keys())
|
||||
unique_shards = list(set(shard_paths.values()))
|
||||
|
||||
for shard_path in unique_shards:
|
||||
tensors = st.load_file(os.path.join(checkpoint_path, shard_path))
|
||||
|
||||
for module_name, target in modules.items():
|
||||
key = module_name + ".weight"
|
||||
if key not in shard_paths or shard_paths[key] != shard_path:
|
||||
continue
|
||||
|
||||
new_weight = tensors[key]
|
||||
update_weights(
|
||||
target, new_weight, reinit=False, device=target.weight.device
|
||||
)
|
||||
Loading…
Reference in a new issue