LLM: Add fuse rope and norm optimization for Aquila. (#9161)
* add fuse norm optimization. * add fuse rope optimization
This commit is contained in:
parent
e7aa67e141
commit
433f408081
2 changed files with 13 additions and 3 deletions
|
|
@ -331,4 +331,7 @@ def optimize(model):
|
|||
module.AquilaAttention,
|
||||
aquila_attention_forward
|
||||
)
|
||||
convert_forward(model,
|
||||
module.AquilaRMSNorm,
|
||||
llama_rms_norm_forward)
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -44,6 +44,7 @@ from torch import nn
|
|||
|
||||
from bigdl.llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||
from bigdl.llm.utils.common import log4Error
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
|
@ -73,6 +74,12 @@ def aquila_attention_forward(
|
|||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||
key_states,
|
||||
position_ids,
|
||||
"aquila")
|
||||
else:
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "aquila")
|
||||
|
|
|
|||
Loading…
Reference in a new issue