Replace torch.bmm with safe_bmm (#9519)

* replace bmm with safe one

* rename args and deprecated warning
This commit is contained in:
Zhao Changmin 2023-11-24 12:16:48 +08:00 committed by GitHub
parent b3178d449f
commit 42b7a16bc5
4 changed files with 95 additions and 15 deletions

View file

@ -26,6 +26,7 @@ from bigdl.llm.ggml.quantize import ggml_tensor_qtype
from bigdl.llm.utils.common import invalidInputError
from bigdl.llm.transformers.utils import extract_local_archive_file, get_local_shard_files
import transformers
import warnings
from transformers import PreTrainedModel
from .utils.common import MuteHFLogger
from .utils.lazy_load_torch import LazyLoadTensors
@ -193,7 +194,7 @@ def load_low_bit(model, model_path):
def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_convert=None,
replace_embedding=False):
cpu_embedding=False, lightweight_bmm=False, **kwargs):
"""
A method to optimize any pytorch model.
@ -203,7 +204,9 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_
:param optimize_llm: Whether to further optimize llm model.
:param modules_to_not_convert: list of str value, modules (nn.Module) that are skipped
when conducting model optimizations. Default to be None.
:param replace_embedding: Whether to replace the Embedding layer, may need to set it
:param cpu_embedding: Whether to replace the Embedding layer, may need to set it
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
:param lightweight_bmm: Whether to replace the torch.bmm ops, may need to set it
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
:return: The optimized model.
@ -226,12 +229,17 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_
invalidInputError(model.device.type == 'cpu',
"Expect model on device `cpu`, "
f"but got device type {model.device.type}")
if kwargs.pop("replace_embedding", False):
warnings.warn("replace_embedding is deprecated and will be removed in a future version,"
" please use cpu_embedding instead.", FutureWarning)
cpu_embedding = True
qtype = ggml_tensor_qtype[low_bit]
model = ggml_convert_low_bit(model,
qtype=qtype,
optimize_model=optimize_llm,
modules_to_not_convert=modules_to_not_convert,
replace_embedding=replace_embedding)
cpu_embedding=cpu_embedding,
lightweight_bmm=lightweight_bmm)
# add save_low_bit to pretrained model dynamically
import types
model._bigdl_config = dict()

View file

@ -0,0 +1,45 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import linear_q4_0
torch_bmm_old_ = torch.bmm
def torch_bmm(a, b):
if a.device.type == 'cpu':
return torch_bmm_old_(a, b)
batch, A_rows, common = a.size()
B_cols = b.size(2)
C = torch.empty((batch, A_rows, B_cols), device=a.device)
if a.size(1) == 1:
torch_bmm_old_(a, b, out=C)
else:
linear_q4_0.bmm(a.contiguous(), b.contiguous(), C)
return C
class SafeBMM:
def __init__(self):
self._old_bmm = torch_bmm_old_
def __enter__(self):
torch.bmm = torch_bmm
def __exit__(self, *args, **kwargs):
torch.bmm = self._old_bmm

View file

@ -172,7 +172,7 @@ def convert_gptq(module, awq=False):
def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
current_key_name=None, convert_shape_only=False,
replace_embedding=False):
cpu_embedding=False):
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params, FP16Linear
from bigdl.llm.transformers.embedding import LLMEmbedding
has_been_replaced = False
@ -265,7 +265,7 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
model._modules[name].requires_grad_(False)
module.weight = None
elif replace_embedding and type(module) == nn.Embedding:
elif cpu_embedding and type(module) == nn.Embedding:
# skip user-defined Embedding layer
if platform.system().lower() == 'windows':
model._modules[name] = LLMEmbedding(
@ -287,7 +287,7 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
modules_to_not_convert,
current_key_name,
convert_shape_only,
replace_embedding,
cpu_embedding,
)
has_been_replaced = _flag or has_been_replaced
return model, has_been_replaced
@ -321,7 +321,8 @@ def _optimize_pre(model):
def ggml_convert_low_bit(model, qtype, optimize_model=True,
convert_shape_only=False, device="cpu",
modules_to_not_convert=None, replace_embedding=False):
modules_to_not_convert=None, cpu_embedding=False,
lightweight_bmm=False):
logger.info(f"Converting the current model to "
f"{list(ggml_tensor_qtype.keys())[list(ggml_tensor_qtype.values()).index(qtype)]} "
f"format......")
@ -332,7 +333,7 @@ def ggml_convert_low_bit(model, qtype, optimize_model=True,
model, has_been_replaced = _replace_with_low_bit_linear(
model, qtype, modules_to_not_convert,
None, convert_shape_only, replace_embedding,
None, convert_shape_only, cpu_embedding,
)
if not has_been_replaced:
warnings.warn(
@ -349,7 +350,7 @@ def ggml_convert_low_bit(model, qtype, optimize_model=True,
pass
if optimize_model:
model = _optimize_post(model)
model = _optimize_post(model, lightweight_bmm)
return model
@ -361,7 +362,7 @@ def convert_forward(m, target_m, new_forward):
convert_forward(sub_m, target_m, new_forward)
def _optimize_post(model):
def _optimize_post(model, lightweight_bmm=False):
from packaging import version
from bigdl.llm.transformers.models.llama import llama_attention_forward_4_31
from bigdl.llm.transformers.models.llama import llama_rms_norm_forward
@ -593,4 +594,18 @@ def _optimize_post(model):
convert_forward(model,
module.MistralRMSNorm,
llama_rms_norm_forward)
elif model.config.model_type == "whisper" and lightweight_bmm:
if platform.system().lower() == 'windows':
from bigdl.llm.transformers.bmm import SafeBMM
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
old_fwd = module.WhisperAttention.forward
def safe_bmm_fwd(*args, **kwargs):
with SafeBMM():
return old_fwd(*args, **kwargs)
convert_forward(model,
module.WhisperAttention,
safe_bmm_fwd)
return model

View file

@ -98,7 +98,9 @@ class _BaseAutoModelClass:
Default to be True.
:param modules_to_not_convert: list of str value, modules (nn.Module) that are skipped when
conducting model optimizations. Default to be None.
:param replace_embedding: Whether to replace the Embedding layer, may need to set it
:param cpu_embedding: Whether to replace the Embedding layer, may need to set it
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
:param lightweight_bmm: Whether to replace the torch.bmm ops, may need to set it
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
:return: a model instance
"""
@ -201,7 +203,12 @@ class _BaseAutoModelClass:
# `from_pretrained`` may pop items out in dict
# and lead to args missing.
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
replace_embedding = kwargs.pop("replace_embedding", False)
cpu_embedding = kwargs.pop("cpu_embedding", False)
if kwargs.pop("replace_embedding", False):
warnings.warn("replace_embedding is deprecated and will be removed in a future version,"
" please use cpu_embedding instead.", FutureWarning)
cpu_embedding = True
lightweight_bmm = kwargs.pop("lightweight_bmm", False)
quant_config = kwargs.pop("quantization_config", None)
_args = copy.deepcopy(args)
_kwargs = copy.deepcopy(kwargs)
@ -262,7 +269,7 @@ class _BaseAutoModelClass:
model = model.to("cpu")
model = ggml_convert_low_bit(model, qtype, optimize_model,
modules_to_not_convert=modules_to_not_convert,
replace_embedding=replace_embedding)
cpu_embedding=cpu_embedding, lightweight_bmm=lightweight_bmm)
model.config.update({"bigdl_transformers_low_bit": q_k})
model.config.update({"tie_word_embeddings": False})
@ -299,7 +306,12 @@ class _BaseAutoModelClass:
import os
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
replace_embedding = kwargs.pop("replace_embedding", False)
cpu_embedding = kwargs.pop("cpu_embedding", False)
if kwargs.pop("replace_embedding", False):
warnings.warn("replace_embedding is deprecated and will be removed in a future version,"
" please use cpu_embedding instead.", FutureWarning)
cpu_embedding = True
lightweight_bmm = kwargs.pop("lightweight_bmm", False)
# Autofactory
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs_orig = copy.deepcopy(kwargs)
@ -411,7 +423,7 @@ class _BaseAutoModelClass:
quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device,
modules_to_not_convert=modules_to_not_convert,
replace_embedding=replace_embedding)
cpu_embedding=cpu_embedding, lightweight_bmm=lightweight_bmm)
if is_sharded:
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]