Replace torch.bmm with safe_bmm (#9519)
* replace bmm with safe one * rename args and deprecated warning
This commit is contained in:
parent
b3178d449f
commit
42b7a16bc5
4 changed files with 95 additions and 15 deletions
|
|
@ -26,6 +26,7 @@ from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
|||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.utils import extract_local_archive_file, get_local_shard_files
|
||||
import transformers
|
||||
import warnings
|
||||
from transformers import PreTrainedModel
|
||||
from .utils.common import MuteHFLogger
|
||||
from .utils.lazy_load_torch import LazyLoadTensors
|
||||
|
|
@ -193,7 +194,7 @@ def load_low_bit(model, model_path):
|
|||
|
||||
|
||||
def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_convert=None,
|
||||
replace_embedding=False):
|
||||
cpu_embedding=False, lightweight_bmm=False, **kwargs):
|
||||
"""
|
||||
A method to optimize any pytorch model.
|
||||
|
||||
|
|
@ -203,7 +204,9 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_
|
|||
:param optimize_llm: Whether to further optimize llm model.
|
||||
:param modules_to_not_convert: list of str value, modules (nn.Module) that are skipped
|
||||
when conducting model optimizations. Default to be None.
|
||||
:param replace_embedding: Whether to replace the Embedding layer, may need to set it
|
||||
:param cpu_embedding: Whether to replace the Embedding layer, may need to set it
|
||||
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
|
||||
:param lightweight_bmm: Whether to replace the torch.bmm ops, may need to set it
|
||||
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
|
||||
|
||||
:return: The optimized model.
|
||||
|
|
@ -226,12 +229,17 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_
|
|||
invalidInputError(model.device.type == 'cpu',
|
||||
"Expect model on device `cpu`, "
|
||||
f"but got device type {model.device.type}")
|
||||
if kwargs.pop("replace_embedding", False):
|
||||
warnings.warn("replace_embedding is deprecated and will be removed in a future version,"
|
||||
" please use cpu_embedding instead.", FutureWarning)
|
||||
cpu_embedding = True
|
||||
qtype = ggml_tensor_qtype[low_bit]
|
||||
model = ggml_convert_low_bit(model,
|
||||
qtype=qtype,
|
||||
optimize_model=optimize_llm,
|
||||
modules_to_not_convert=modules_to_not_convert,
|
||||
replace_embedding=replace_embedding)
|
||||
cpu_embedding=cpu_embedding,
|
||||
lightweight_bmm=lightweight_bmm)
|
||||
# add save_low_bit to pretrained model dynamically
|
||||
import types
|
||||
model._bigdl_config = dict()
|
||||
|
|
|
|||
45
python/llm/src/bigdl/llm/transformers/bmm.py
Normal file
45
python/llm/src/bigdl/llm/transformers/bmm.py
Normal file
|
|
@ -0,0 +1,45 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import torch
|
||||
import linear_q4_0
|
||||
torch_bmm_old_ = torch.bmm
|
||||
|
||||
|
||||
def torch_bmm(a, b):
|
||||
if a.device.type == 'cpu':
|
||||
return torch_bmm_old_(a, b)
|
||||
|
||||
batch, A_rows, common = a.size()
|
||||
B_cols = b.size(2)
|
||||
C = torch.empty((batch, A_rows, B_cols), device=a.device)
|
||||
if a.size(1) == 1:
|
||||
torch_bmm_old_(a, b, out=C)
|
||||
else:
|
||||
linear_q4_0.bmm(a.contiguous(), b.contiguous(), C)
|
||||
return C
|
||||
|
||||
|
||||
class SafeBMM:
|
||||
def __init__(self):
|
||||
self._old_bmm = torch_bmm_old_
|
||||
|
||||
def __enter__(self):
|
||||
torch.bmm = torch_bmm
|
||||
|
||||
def __exit__(self, *args, **kwargs):
|
||||
torch.bmm = self._old_bmm
|
||||
|
|
@ -172,7 +172,7 @@ def convert_gptq(module, awq=False):
|
|||
|
||||
def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
||||
current_key_name=None, convert_shape_only=False,
|
||||
replace_embedding=False):
|
||||
cpu_embedding=False):
|
||||
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params, FP16Linear
|
||||
from bigdl.llm.transformers.embedding import LLMEmbedding
|
||||
has_been_replaced = False
|
||||
|
|
@ -265,7 +265,7 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
|||
model._modules[name].requires_grad_(False)
|
||||
|
||||
module.weight = None
|
||||
elif replace_embedding and type(module) == nn.Embedding:
|
||||
elif cpu_embedding and type(module) == nn.Embedding:
|
||||
# skip user-defined Embedding layer
|
||||
if platform.system().lower() == 'windows':
|
||||
model._modules[name] = LLMEmbedding(
|
||||
|
|
@ -287,7 +287,7 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
|||
modules_to_not_convert,
|
||||
current_key_name,
|
||||
convert_shape_only,
|
||||
replace_embedding,
|
||||
cpu_embedding,
|
||||
)
|
||||
has_been_replaced = _flag or has_been_replaced
|
||||
return model, has_been_replaced
|
||||
|
|
@ -321,7 +321,8 @@ def _optimize_pre(model):
|
|||
|
||||
def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
||||
convert_shape_only=False, device="cpu",
|
||||
modules_to_not_convert=None, replace_embedding=False):
|
||||
modules_to_not_convert=None, cpu_embedding=False,
|
||||
lightweight_bmm=False):
|
||||
logger.info(f"Converting the current model to "
|
||||
f"{list(ggml_tensor_qtype.keys())[list(ggml_tensor_qtype.values()).index(qtype)]} "
|
||||
f"format......")
|
||||
|
|
@ -332,7 +333,7 @@ def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
|||
|
||||
model, has_been_replaced = _replace_with_low_bit_linear(
|
||||
model, qtype, modules_to_not_convert,
|
||||
None, convert_shape_only, replace_embedding,
|
||||
None, convert_shape_only, cpu_embedding,
|
||||
)
|
||||
if not has_been_replaced:
|
||||
warnings.warn(
|
||||
|
|
@ -349,7 +350,7 @@ def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
|||
pass
|
||||
|
||||
if optimize_model:
|
||||
model = _optimize_post(model)
|
||||
model = _optimize_post(model, lightweight_bmm)
|
||||
return model
|
||||
|
||||
|
||||
|
|
@ -361,7 +362,7 @@ def convert_forward(m, target_m, new_forward):
|
|||
convert_forward(sub_m, target_m, new_forward)
|
||||
|
||||
|
||||
def _optimize_post(model):
|
||||
def _optimize_post(model, lightweight_bmm=False):
|
||||
from packaging import version
|
||||
from bigdl.llm.transformers.models.llama import llama_attention_forward_4_31
|
||||
from bigdl.llm.transformers.models.llama import llama_rms_norm_forward
|
||||
|
|
@ -593,4 +594,18 @@ def _optimize_post(model):
|
|||
convert_forward(model,
|
||||
module.MistralRMSNorm,
|
||||
llama_rms_norm_forward)
|
||||
elif model.config.model_type == "whisper" and lightweight_bmm:
|
||||
if platform.system().lower() == 'windows':
|
||||
from bigdl.llm.transformers.bmm import SafeBMM
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
old_fwd = module.WhisperAttention.forward
|
||||
|
||||
def safe_bmm_fwd(*args, **kwargs):
|
||||
with SafeBMM():
|
||||
return old_fwd(*args, **kwargs)
|
||||
|
||||
convert_forward(model,
|
||||
module.WhisperAttention,
|
||||
safe_bmm_fwd)
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -98,7 +98,9 @@ class _BaseAutoModelClass:
|
|||
Default to be True.
|
||||
:param modules_to_not_convert: list of str value, modules (nn.Module) that are skipped when
|
||||
conducting model optimizations. Default to be None.
|
||||
:param replace_embedding: Whether to replace the Embedding layer, may need to set it
|
||||
:param cpu_embedding: Whether to replace the Embedding layer, may need to set it
|
||||
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
|
||||
:param lightweight_bmm: Whether to replace the torch.bmm ops, may need to set it
|
||||
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
|
||||
:return: a model instance
|
||||
"""
|
||||
|
|
@ -201,7 +203,12 @@ class _BaseAutoModelClass:
|
|||
# `from_pretrained`` may pop items out in dict
|
||||
# and lead to args missing.
|
||||
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
|
||||
replace_embedding = kwargs.pop("replace_embedding", False)
|
||||
cpu_embedding = kwargs.pop("cpu_embedding", False)
|
||||
if kwargs.pop("replace_embedding", False):
|
||||
warnings.warn("replace_embedding is deprecated and will be removed in a future version,"
|
||||
" please use cpu_embedding instead.", FutureWarning)
|
||||
cpu_embedding = True
|
||||
lightweight_bmm = kwargs.pop("lightweight_bmm", False)
|
||||
quant_config = kwargs.pop("quantization_config", None)
|
||||
_args = copy.deepcopy(args)
|
||||
_kwargs = copy.deepcopy(kwargs)
|
||||
|
|
@ -262,7 +269,7 @@ class _BaseAutoModelClass:
|
|||
model = model.to("cpu")
|
||||
model = ggml_convert_low_bit(model, qtype, optimize_model,
|
||||
modules_to_not_convert=modules_to_not_convert,
|
||||
replace_embedding=replace_embedding)
|
||||
cpu_embedding=cpu_embedding, lightweight_bmm=lightweight_bmm)
|
||||
model.config.update({"bigdl_transformers_low_bit": q_k})
|
||||
model.config.update({"tie_word_embeddings": False})
|
||||
|
||||
|
|
@ -299,7 +306,12 @@ class _BaseAutoModelClass:
|
|||
import os
|
||||
|
||||
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
|
||||
replace_embedding = kwargs.pop("replace_embedding", False)
|
||||
cpu_embedding = kwargs.pop("cpu_embedding", False)
|
||||
if kwargs.pop("replace_embedding", False):
|
||||
warnings.warn("replace_embedding is deprecated and will be removed in a future version,"
|
||||
" please use cpu_embedding instead.", FutureWarning)
|
||||
cpu_embedding = True
|
||||
lightweight_bmm = kwargs.pop("lightweight_bmm", False)
|
||||
# Autofactory
|
||||
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
||||
kwargs_orig = copy.deepcopy(kwargs)
|
||||
|
|
@ -411,7 +423,7 @@ class _BaseAutoModelClass:
|
|||
quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
|
||||
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device,
|
||||
modules_to_not_convert=modules_to_not_convert,
|
||||
replace_embedding=replace_embedding)
|
||||
cpu_embedding=cpu_embedding, lightweight_bmm=lightweight_bmm)
|
||||
|
||||
if is_sharded:
|
||||
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
|
||||
|
|
|
|||
Loading…
Reference in a new issue