Support minicpm-1B in level0 pipeline (#12297)

This commit is contained in:
binbin Deng 2024-10-30 17:21:47 +08:00 committed by GitHub
parent 46d8300f6b
commit 41b8064554
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 435 additions and 71 deletions

View file

@ -9,6 +9,7 @@ In this directory, you will find examples on how to directly run HuggingFace `tr
| Llama2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
| Llama3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) |
| MiniCPM | [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16) |
## 0. Requirements
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
@ -47,6 +48,9 @@ python llama3.py
:: to run Baichuan2-7B-Chat
python baichuan2.py
:: to run MiniCPM-1B-sft-bf16
python minicpm.py
```
Arguments info:

View file

@ -0,0 +1,105 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers.utils import logging
import os
logger = logging.get_logger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `generate()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="openbmb/MiniCPM-1B-sft-bf16",
help="The huggingface repo id for the MiniCPM model to be downloaded"
", or the path to the huggingface checkpoint folder",
)
parser.add_argument("--lowbit-path", type=str,
default="",
help="The path to the lowbit model folder, leave blank if you do not want to save. \
If path not exists, lowbit model will be saved there. \
Else, lowbit model will be loaded.",
)
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
args = parser.parse_args()
model_path = args.repo_id_or_model_path
if not args.lowbit_path or not os.path.exists(args.lowbit_path):
model = AutoModelForCausalLM.from_pretrained(model_path,
optimize_model=True,
pipeline=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
torch_dtype=torch.float16,
attn_implementation="eager",
transpose_value_cache=not args.disable_transpose_value_cache,
trust_remote_code=True)
else:
model = AutoModelForCausalLM.load_low_bit(
args.lowbit_path,
attn_implementation="eager",
torch_dtype=torch.float16,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
pipeline=True,
transpose_value_cache=not args.disable_transpose_value_cache,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if args.lowbit_path and not os.path.exists(args.lowbit_path):
model.save_low_bit(args.lowbit_path)
print("-" * 80)
print("done")
with torch.inference_mode():
print("finish to load")
for i in range(5):
prompt = "<用户>{}<AI>".format(args.prompt)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("input length:", len(_input_ids[0]))
st = time.time()
output = model.generate(
_input_ids, max_new_tokens=args.n_predict, do_print=True
)
end = time.time()
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)
print("-" * 80)
print("done")
print("success shut down")

View file

@ -92,7 +92,7 @@ if __name__ == "__main__":
print("finish to load")
for i in range(5):
_input_ids = tokenizer.encode("<用户>{}".format(args.prompt), return_tensors="pt")
_input_ids = tokenizer.encode("<用户>{}<AI>".format(args.prompt), return_tensors="pt")
print("input length:", len(_input_ids[0]))
st = time.time()
output = model.generate(

View file

@ -227,6 +227,46 @@ def convert_baichuan(
convert_forward(model, module.BaichuanModel, baichuan_model_forward)
def convert_minicpm(
model: torch.nn.Module,
max_output_len=1024,
max_prompt_len=1024,
decoder=False,
inter_pp=None,
intra_pp=None,
transpose_value_cache=True,
):
from ipex_llm.transformers.npu_models.minicpm_mp import gen_minicpm_fused_model_forward
from ipex_llm.transformers.npu_models.minicpm_mp import DecodeRunner, PrefillRunner
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
if decoder:
decode_runner = DecodeRunner(
model,
max_seq_len=max_output_len,
inter_pp=inter_pp,
intra_pp=intra_pp,
transpose_value_cache=transpose_value_cache,
)
else:
decode_runner = None
prefill_runner = PrefillRunner(
model,
max_output_len=max_output_len,
max_prompt_len=max_prompt_len,
transpose_value_cache=transpose_value_cache,
)
minicpm_model_forward = gen_minicpm_fused_model_forward(
prefill_runner=prefill_runner, decode_runner=decode_runner
)
convert_forward(model, module.MiniCPMModel, minicpm_model_forward)
if model.config.num_hidden_layers == 40:
# for minicpm-2b
from ipex_llm.transformers.npu_models.minicpm_mp import minicpm_casullm_forward
convert_forward(model, module.MiniCPMForCausalLM, minicpm_casullm_forward)
def optimize_llm(
model: torch.nn.Module,
max_context_len=1024,
@ -291,41 +331,13 @@ def optimize_llm(
intra_pp = 2
if inter_pp is None:
inter_pp = 2
from ipex_llm.transformers.npu_models.minicpm_mp import gen_minicpm_fused_model_forward
from ipex_llm.transformers.npu_models.minicpm_mp import DecodeRunner, PrefillRunner
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
if model.config.num_hidden_layers == 52:
# for minicpm-1b
transpose_cache = transpose_value_cache
elif model.config.num_hidden_layers == 40:
# for minicpm-2b
transpose_cache = False
decode_runner = DecodeRunner(
model,
max_seq_len=max_context_len,
inter_pp=inter_pp,
intra_pp=intra_pp,
transpose_value_cache=transpose_cache,
)
prefill_runner = PrefillRunner(
model,
max_output_len=max_context_len,
max_prompt_len=max_prompt_len,
transpose_value_cache=transpose_cache,
)
minicpm_model_forward = gen_minicpm_fused_model_forward(
prefill_runner=prefill_runner, decode_runner=decode_runner
)
convert_forward(model, module.MiniCPMModel, minicpm_model_forward)
if model.config.num_hidden_layers == 40:
# for minicpm-2b
from ipex_llm.transformers.npu_models.minicpm_mp import minicpm_casullm_forward
convert_forward(model, module.MiniCPMForCausalLM, minicpm_casullm_forward)
convert_minicpm(model,
max_output_len=max_context_len,
max_prompt_len=max_prompt_len,
inter_pp=inter_pp,
intra_pp=intra_pp,
decoder=True,
transpose_value_cache=transpose_value_cache)
elif model.config.model_type == "baichuan" and model.config.num_hidden_layers == 32:
# for Baichuan2-7B
if intra_pp is None:
@ -339,7 +351,7 @@ def optimize_llm(
intra_pp=intra_pp,
decoder=True,
transpose_value_cache=transpose_value_cache)
if isinstance(model.lm_head, SlicedLMHead):
if hasattr(model, 'lm_head') and isinstance(model.lm_head, SlicedLMHead):
model.lm_head.get_fused_lm_head()

View file

@ -54,7 +54,7 @@ from transformers.modeling_outputs import CausalLMOutputWithPast
from torch.nn import CrossEntropyLoss
class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
class LowBitMinicpmMultiDecoderlayer(LLMBaseNNFactory):
def __init__(
self,
# batch_size: int,
@ -118,31 +118,13 @@ class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
# Self Attention
if mode == "decode":
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1))
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
dtype=np.int64)
else:
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len))
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len),
dtype=np.int64)
position_ids = self.create_input_op((self.batch_size, self.seq_len))
past_keys = []
past_values = []
if mode == "decode":
for i in range(num_layers):
past_key = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
)
if transpose_value:
past_value = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len)
)
else:
past_value = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
)
past_keys.append(past_key)
past_values.append(past_value)
else:
past_keys = [None] * num_layers
past_values = [None] * num_layers
position_ids = self.create_input_op((self.batch_size, self.seq_len), dtype=np.int64)
if input_layernorm_weights is None:
input_layernorm_weights = []
@ -168,6 +150,27 @@ class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
input_layernorm_weights = [self.constant(w) for w in input_layernorm_weights]
post_attn_layernorm_weights = [self.constant(w) for w in post_attn_layernorm_weights]
past_keys = []
past_values = []
if mode == "decode":
for i in range(num_layers):
past_key = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
)
if transpose_value:
past_value = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len)
)
else:
past_value = self.create_cache_op(
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
)
past_keys.append(past_key)
past_values.append(past_value)
else:
past_keys = [None] * num_layers
past_values = [None] * num_layers
hidden_states = input
curr_key_values = []
@ -297,7 +300,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
start, end = self.layer_ranges[i]
lm_0 = input_laynorm_weights[start:end]
lm_1 = post_attn_layernorm_weights[start:end]
decoder = LowBitLlamaMultiDecoderlayer(
decoder = LowBitMinicpmMultiDecoderlayer(
[1, 1, num_heads * head_dim],
input_layernorm_weights=lm_0,
post_attn_layernorm_weights=lm_1,
@ -334,15 +337,15 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
inputs = (
hidden_states.to(torch.float16),
attention_mask,
position_ids.to(torch.float16),
attention_mask.to(torch.int64),
position_ids.to(torch.int64),
)
for i in range(self.intra_stages):
start, end = self.layer_ranges[i]
self.backend_decoders[i].update_cache(past_key_value, self.layer_indexes[start:end])
hidden_states, new_keys, new_values = LowBitLlamaMultiDecoderlayer.run_decoders(
hidden_states, new_keys, new_values = LowBitMinicpmMultiDecoderlayer.run_decoders(
inputs,
decoders=self.backend_decoders)
@ -403,7 +406,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
np_dtype = np.float16
self.backend_cls_prefill = partial(
LowBitLlamaMultiDecoderlayer,
LowBitMinicpmMultiDecoderlayer,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
num_layers=1,
@ -445,7 +448,9 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
seq_len = hidden_states.shape[1]
backend_cls = self.backend_cls_prefill
inputs = (hidden_states.to(torch.float16), attention_mask, position_ids.to(torch.float16))
inputs = (hidden_states.to(torch.float16),
attention_mask.to(torch.int64),
position_ids.to(torch.int64))
inputs += (self.layer_norm_0, self.layer_norm_1)
hidden_states, past_key, past_value = run_model(
inputs, self.op_parameters, backend_cls, self.op_id, replica=2
@ -578,9 +583,9 @@ def run_decode(
pad_mask = (0, pad_len)
padded_causal_mask = F.pad(
causal_mask.to(torch.float16), pad_mask, value=torch.finfo(torch.float16).min
causal_mask.to(torch.int64), pad_mask, value=torch.iinfo(torch.int64).min
)
padded_causal_mask[:, :, :, -1] = 0.0
padded_causal_mask[:, :, :, -1] = 0
dist.recv(hidden_states, src=rank - 1)
layer_outputs = multi_decoder(
hidden_states,
@ -831,9 +836,9 @@ class PrefillRunner:
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
position_ids = F.pad(position_ids, (0, pad_len), value=0)
attention_mask = F.pad(
attention_mask.to(torch.float16),
attention_mask.to(torch.int64),
(0, pad_len, 0, pad_len),
value=torch.finfo(torch.float16).min,
value=torch.iinfo(torch.int64).min,
)
args = (hidden_states, position_ids, attention_mask, past_key_value)

View file

@ -279,6 +279,45 @@ def convert_llm(model: torch.nn.Module,
except:
invalidInputError(False,
"False to InitLLMPipeline.")
elif model.config.model_type == "minicpm":
with tempfile.TemporaryDirectory() as temp_dir:
weight_dir = os.path.join(temp_dir, "model_weights")
os.mkdir(weight_dir)
layer_num = len(model.model.layers)
from .minicpm import convert_minicpm_layer, convert_lm_head_and_embedding
first_blob_path, last_blob_path = convert_lm_head_and_embedding(model, n_splits_linear,
temp_dir, weight_dir)
param_list = []
for layer_idx in range(0, layer_num):
param_list.append((model, layer_idx, n_splits_linear, n_splits_down_proj,
temp_dir, weight_dir, transpose_value_cache, kv_len, group_size))
with Pool() as pool:
result = pool.starmap(convert_minicpm_layer, param_list)
# Prefill Runner
from ipex_llm.transformers.npu_models.convert_mp import convert_minicpm
convert_minicpm(model,
max_output_len=kv_len,
max_prompt_len=max_prompt_len,
decoder=False,
transpose_value_cache=transpose_value_cache)
# patch attrs for generate
model.kv_len = kv_len
model.num_head = model.model.layers[0].self_attn.num_heads
model.head_dim = model.model.layers[0].self_attn.head_dim
model.num_layers = layer_num
model.transpose_value_cache = transpose_value_cache
try:
res = InitLLMPipeline("minicpm", kv_len, model.num_head, model.head_dim, layer_num,
model.vocab_size, weight_dir, "model",
first_blob_path, last_blob_path,
os.path.join(temp_dir, "decoder_layer"))
except:
invalidInputError(False,
"False to InitLLMPipeline.")
else:
invalidInputError(False,
"Now we only support Llama2 / Llama3 / Baichuan2 for pipeline running.")

View file

@ -0,0 +1,199 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import numpy as np
import os
from .common import update_names_of_IR_and_export_blob, LowBitLLMLMHead
from intel_npu_acceleration_library.backend.factory import NNFactory
class MiniCPMEmbedding(NNFactory):
def __init__(
self,
vocab_size,
embedding_dim,
embedding_weight,
padding_idx,
dtype, # fp16
scale_emb,
device: str = "NPU",
):
super().__init__(False, device)
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.dtype = dtype
# define input
weight = self.constant(embedding_weight)
input = self.parameter((1, 1), dtype=np.int32)
if padding_idx == -1:
padding_idx += vocab_size
axis_node = self.constant(np.array([0], dtype=np.int64))
if padding_idx is not None:
masked_embeddings = np.ones(weight.shape, dtype=np.float16)
masked_embeddings[padding_idx, :] = 0.0 # mask
node_mask = self.constant(masked_embeddings)
node_masked_w = self.eltwise_mul(weight, node_mask)
res = self.gather(node_masked_w, input, axis_node, 0)
else:
res = self.gather(weight, input, axis_node, 0)
res = res * scale_emb
# define outputs
res = self.convert_to_fp16(res)
print("start compiling")
self.compile()
def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
num_heads = model.model.layers[0].self_attn.num_heads
num_key_value_heads = model.model.layers[0].self_attn.num_key_value_heads
head_dim = model.model.layers[0].self_attn.head_dim
rms_norm_eps = model.config.rms_norm_eps
vocab_size = model.config.vocab_size
model_norm = model.model.norm
lm_head = model.lm_head
if n_splits_linear == 1:
weights = [(lm_head.weight, lm_head.scale)]
else:
lm_heads = lm_head.lm_heads
lm_head_weights = []
scales = []
for i in range(n_splits_linear):
lm_head_weights.append(lm_heads[i].weight)
scales.append(lm_heads[i].scale)
weights = [(torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0))]
if isinstance(weights[0], tuple):
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
np_dtype = np.float16
new_lm_head = LowBitLLMLMHead(
[1, 1, num_heads * head_dim],
num_heads=num_heads,
max_seq_len=1,
rms_norm_eps=rms_norm_eps,
mode="decode",
transpose_value=False,
dtype=np_dtype,
model_norm_weight=model_norm.weight.to(torch.float16),
vocab_size=vocab_size,
n_splits=n_splits_linear
)
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir)
# save weights bins files
if n_splits_linear == 1:
weight_numpy = [
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
]
else:
weight_numpy = [v.numpy() for v in weights[0]]
for idx, weight in enumerate(weight_numpy):
bin_file = os.path.join(weight_dir, f"model_lm_head_input_{1+idx}.bin")
weight.tofile(bin_file)
embedding_layer = model.model.embed_tokens
new_embedding = MiniCPMEmbedding(
vocab_size=model.config.vocab_size,
embedding_dim=model.config.hidden_size,
embedding_weight=embedding_layer.weight.to(torch.float16).detach().numpy(),
padding_idx=model.config.pad_token_id,
dtype=np.float16,
scale_emb=model.config.scale_emb,
)
first_blob_path = update_names_of_IR_and_export_blob(new_embedding, "embedding",
temp_dir)
return first_blob_path, last_blob_path
def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
temp_dir, weight_dir, transpose_value_cache, kv_len, group_size):
num_heads = model.model.layers[0].self_attn.num_heads
num_key_value_heads = model.model.layers[0].self_attn.num_key_value_heads
head_dim = model.model.layers[0].self_attn.head_dim
intermediate_size = model.config.intermediate_size
rms_norm_eps = model.config.rms_norm_eps
num_hidden_layers = model.config.num_hidden_layers
scale_depth = model.model.config.scale_depth
from ipex_llm.transformers.npu_models.minicpm_mp import LowBitMinicpmMultiDecoderlayer
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
mlp_layer = curr_layer.mlp
weights = []
if n_splits_linear == 1:
weights = [
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
]
else:
# TODO
pass
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
if isinstance(weights[0], tuple):
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
np_dtype = np.float16
single_decoder = LowBitMinicpmMultiDecoderlayer(
[1, 1, num_heads * head_dim],
input_layernorm_weights=[layer_norm_0],
post_attn_layernorm_weights=[layer_norm_1],
cached_cos=cached_cos,
cached_sin=cached_sin,
num_heads=num_heads,
num_key_value_heads=num_key_value_heads,
num_layers=1,
max_seq_len=kv_len,
rms_norm_eps=rms_norm_eps,
intermediate_size=intermediate_size,
scale_depth=scale_depth,
num_hidden_layers=num_hidden_layers,
mode="decode",
transpose_value=transpose_value_cache,
dtype=np_dtype,
)
rest_blob_path = update_names_of_IR_and_export_blob(single_decoder,
f"decoder_layer_{layer_idx}",
temp_dir)
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{5+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{5+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
del single_decoder