Support minicpm-1B in level0 pipeline (#12297)
This commit is contained in:
parent
46d8300f6b
commit
41b8064554
7 changed files with 435 additions and 71 deletions
|
|
@ -9,6 +9,7 @@ In this directory, you will find examples on how to directly run HuggingFace `tr
|
|||
| Llama2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
|
||||
| Llama3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
|
||||
| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) |
|
||||
| MiniCPM | [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16) |
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
|
||||
|
|
@ -47,6 +48,9 @@ python llama3.py
|
|||
|
||||
:: to run Baichuan2-7B-Chat
|
||||
python baichuan2.py
|
||||
|
||||
:: to run MiniCPM-1B-sft-bf16
|
||||
python minicpm.py
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
|
|
|
|||
|
|
@ -0,0 +1,105 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from transformers.utils import logging
|
||||
import os
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Predict Tokens using `generate()` API for npu model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id-or-model-path",
|
||||
type=str,
|
||||
default="openbmb/MiniCPM-1B-sft-bf16",
|
||||
help="The huggingface repo id for the MiniCPM model to be downloaded"
|
||||
", or the path to the huggingface checkpoint folder",
|
||||
)
|
||||
parser.add_argument("--lowbit-path", type=str,
|
||||
default="",
|
||||
help="The path to the lowbit model folder, leave blank if you do not want to save. \
|
||||
If path not exists, lowbit model will be saved there. \
|
||||
Else, lowbit model will be loaded.",
|
||||
)
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
|
||||
if not args.lowbit_path or not os.path.exists(args.lowbit_path):
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
optimize_model=True,
|
||||
pipeline=True,
|
||||
max_context_len=args.max_context_len,
|
||||
max_prompt_len=args.max_prompt_len,
|
||||
torch_dtype=torch.float16,
|
||||
attn_implementation="eager",
|
||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
||||
trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.load_low_bit(
|
||||
args.lowbit_path,
|
||||
attn_implementation="eager",
|
||||
torch_dtype=torch.float16,
|
||||
max_context_len=args.max_context_len,
|
||||
max_prompt_len=args.max_prompt_len,
|
||||
pipeline=True,
|
||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
||||
trust_remote_code=True
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
if args.lowbit_path and not os.path.exists(args.lowbit_path):
|
||||
model.save_low_bit(args.lowbit_path)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
with torch.inference_mode():
|
||||
print("finish to load")
|
||||
for i in range(5):
|
||||
prompt = "<用户>{}<AI>".format(args.prompt)
|
||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||
print("input length:", len(_input_ids[0]))
|
||||
st = time.time()
|
||||
output = model.generate(
|
||||
_input_ids, max_new_tokens=args.n_predict, do_print=True
|
||||
)
|
||||
end = time.time()
|
||||
print(f"Inference time: {end-st} s")
|
||||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Input", "-" * 20)
|
||||
print(input_str)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||
print("-" * 20, "Output", "-" * 20)
|
||||
print(output_str)
|
||||
|
||||
print("-" * 80)
|
||||
print("done")
|
||||
print("success shut down")
|
||||
|
|
@ -92,7 +92,7 @@ if __name__ == "__main__":
|
|||
|
||||
print("finish to load")
|
||||
for i in range(5):
|
||||
_input_ids = tokenizer.encode("<用户>{}".format(args.prompt), return_tensors="pt")
|
||||
_input_ids = tokenizer.encode("<用户>{}<AI>".format(args.prompt), return_tensors="pt")
|
||||
print("input length:", len(_input_ids[0]))
|
||||
st = time.time()
|
||||
output = model.generate(
|
||||
|
|
|
|||
|
|
@ -227,6 +227,46 @@ def convert_baichuan(
|
|||
convert_forward(model, module.BaichuanModel, baichuan_model_forward)
|
||||
|
||||
|
||||
def convert_minicpm(
|
||||
model: torch.nn.Module,
|
||||
max_output_len=1024,
|
||||
max_prompt_len=1024,
|
||||
decoder=False,
|
||||
inter_pp=None,
|
||||
intra_pp=None,
|
||||
transpose_value_cache=True,
|
||||
):
|
||||
from ipex_llm.transformers.npu_models.minicpm_mp import gen_minicpm_fused_model_forward
|
||||
from ipex_llm.transformers.npu_models.minicpm_mp import DecodeRunner, PrefillRunner
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
|
||||
if decoder:
|
||||
decode_runner = DecodeRunner(
|
||||
model,
|
||||
max_seq_len=max_output_len,
|
||||
inter_pp=inter_pp,
|
||||
intra_pp=intra_pp,
|
||||
transpose_value_cache=transpose_value_cache,
|
||||
)
|
||||
else:
|
||||
decode_runner = None
|
||||
prefill_runner = PrefillRunner(
|
||||
model,
|
||||
max_output_len=max_output_len,
|
||||
max_prompt_len=max_prompt_len,
|
||||
transpose_value_cache=transpose_value_cache,
|
||||
)
|
||||
minicpm_model_forward = gen_minicpm_fused_model_forward(
|
||||
prefill_runner=prefill_runner, decode_runner=decode_runner
|
||||
)
|
||||
convert_forward(model, module.MiniCPMModel, minicpm_model_forward)
|
||||
if model.config.num_hidden_layers == 40:
|
||||
# for minicpm-2b
|
||||
from ipex_llm.transformers.npu_models.minicpm_mp import minicpm_casullm_forward
|
||||
convert_forward(model, module.MiniCPMForCausalLM, minicpm_casullm_forward)
|
||||
|
||||
|
||||
def optimize_llm(
|
||||
model: torch.nn.Module,
|
||||
max_context_len=1024,
|
||||
|
|
@ -291,41 +331,13 @@ def optimize_llm(
|
|||
intra_pp = 2
|
||||
if inter_pp is None:
|
||||
inter_pp = 2
|
||||
|
||||
from ipex_llm.transformers.npu_models.minicpm_mp import gen_minicpm_fused_model_forward
|
||||
from ipex_llm.transformers.npu_models.minicpm_mp import DecodeRunner, PrefillRunner
|
||||
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
|
||||
if model.config.num_hidden_layers == 52:
|
||||
# for minicpm-1b
|
||||
transpose_cache = transpose_value_cache
|
||||
elif model.config.num_hidden_layers == 40:
|
||||
# for minicpm-2b
|
||||
transpose_cache = False
|
||||
|
||||
decode_runner = DecodeRunner(
|
||||
model,
|
||||
max_seq_len=max_context_len,
|
||||
inter_pp=inter_pp,
|
||||
intra_pp=intra_pp,
|
||||
transpose_value_cache=transpose_cache,
|
||||
)
|
||||
prefill_runner = PrefillRunner(
|
||||
model,
|
||||
convert_minicpm(model,
|
||||
max_output_len=max_context_len,
|
||||
max_prompt_len=max_prompt_len,
|
||||
transpose_value_cache=transpose_cache,
|
||||
)
|
||||
minicpm_model_forward = gen_minicpm_fused_model_forward(
|
||||
prefill_runner=prefill_runner, decode_runner=decode_runner
|
||||
)
|
||||
convert_forward(model, module.MiniCPMModel, minicpm_model_forward)
|
||||
if model.config.num_hidden_layers == 40:
|
||||
# for minicpm-2b
|
||||
from ipex_llm.transformers.npu_models.minicpm_mp import minicpm_casullm_forward
|
||||
convert_forward(model, module.MiniCPMForCausalLM, minicpm_casullm_forward)
|
||||
inter_pp=inter_pp,
|
||||
intra_pp=intra_pp,
|
||||
decoder=True,
|
||||
transpose_value_cache=transpose_value_cache)
|
||||
elif model.config.model_type == "baichuan" and model.config.num_hidden_layers == 32:
|
||||
# for Baichuan2-7B
|
||||
if intra_pp is None:
|
||||
|
|
@ -339,7 +351,7 @@ def optimize_llm(
|
|||
intra_pp=intra_pp,
|
||||
decoder=True,
|
||||
transpose_value_cache=transpose_value_cache)
|
||||
if isinstance(model.lm_head, SlicedLMHead):
|
||||
if hasattr(model, 'lm_head') and isinstance(model.lm_head, SlicedLMHead):
|
||||
model.lm_head.get_fused_lm_head()
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -54,7 +54,7 @@ from transformers.modeling_outputs import CausalLMOutputWithPast
|
|||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
|
||||
class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
|
||||
class LowBitMinicpmMultiDecoderlayer(LLMBaseNNFactory):
|
||||
def __init__(
|
||||
self,
|
||||
# batch_size: int,
|
||||
|
|
@ -118,31 +118,13 @@ class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
|
|||
|
||||
# Self Attention
|
||||
if mode == "decode":
|
||||
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1))
|
||||
attention_mask = self.create_input_op((self.batch_size, 1, 1, self.max_seq_len + 1),
|
||||
dtype=np.int64)
|
||||
else:
|
||||
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len))
|
||||
attention_mask = self.create_input_op((self.batch_size, 1, self.seq_len, self.seq_len),
|
||||
dtype=np.int64)
|
||||
|
||||
position_ids = self.create_input_op((self.batch_size, self.seq_len))
|
||||
past_keys = []
|
||||
past_values = []
|
||||
if mode == "decode":
|
||||
for i in range(num_layers):
|
||||
past_key = self.create_cache_op(
|
||||
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
|
||||
)
|
||||
if transpose_value:
|
||||
past_value = self.create_cache_op(
|
||||
(self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len)
|
||||
)
|
||||
else:
|
||||
past_value = self.create_cache_op(
|
||||
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
|
||||
)
|
||||
past_keys.append(past_key)
|
||||
past_values.append(past_value)
|
||||
else:
|
||||
past_keys = [None] * num_layers
|
||||
past_values = [None] * num_layers
|
||||
position_ids = self.create_input_op((self.batch_size, self.seq_len), dtype=np.int64)
|
||||
|
||||
if input_layernorm_weights is None:
|
||||
input_layernorm_weights = []
|
||||
|
|
@ -168,6 +150,27 @@ class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
|
|||
input_layernorm_weights = [self.constant(w) for w in input_layernorm_weights]
|
||||
post_attn_layernorm_weights = [self.constant(w) for w in post_attn_layernorm_weights]
|
||||
|
||||
past_keys = []
|
||||
past_values = []
|
||||
if mode == "decode":
|
||||
for i in range(num_layers):
|
||||
past_key = self.create_cache_op(
|
||||
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
|
||||
)
|
||||
if transpose_value:
|
||||
past_value = self.create_cache_op(
|
||||
(self.batch_size, self.num_key_value_heads, self.head_dim, self.max_seq_len)
|
||||
)
|
||||
else:
|
||||
past_value = self.create_cache_op(
|
||||
(self.batch_size, self.num_key_value_heads, self.max_seq_len, self.head_dim)
|
||||
)
|
||||
past_keys.append(past_key)
|
||||
past_values.append(past_value)
|
||||
else:
|
||||
past_keys = [None] * num_layers
|
||||
past_values = [None] * num_layers
|
||||
|
||||
hidden_states = input
|
||||
|
||||
curr_key_values = []
|
||||
|
|
@ -297,7 +300,7 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
start, end = self.layer_ranges[i]
|
||||
lm_0 = input_laynorm_weights[start:end]
|
||||
lm_1 = post_attn_layernorm_weights[start:end]
|
||||
decoder = LowBitLlamaMultiDecoderlayer(
|
||||
decoder = LowBitMinicpmMultiDecoderlayer(
|
||||
[1, 1, num_heads * head_dim],
|
||||
input_layernorm_weights=lm_0,
|
||||
post_attn_layernorm_weights=lm_1,
|
||||
|
|
@ -334,15 +337,15 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
|
||||
inputs = (
|
||||
hidden_states.to(torch.float16),
|
||||
attention_mask,
|
||||
position_ids.to(torch.float16),
|
||||
attention_mask.to(torch.int64),
|
||||
position_ids.to(torch.int64),
|
||||
)
|
||||
|
||||
for i in range(self.intra_stages):
|
||||
start, end = self.layer_ranges[i]
|
||||
self.backend_decoders[i].update_cache(past_key_value, self.layer_indexes[start:end])
|
||||
|
||||
hidden_states, new_keys, new_values = LowBitLlamaMultiDecoderlayer.run_decoders(
|
||||
hidden_states, new_keys, new_values = LowBitMinicpmMultiDecoderlayer.run_decoders(
|
||||
inputs,
|
||||
decoders=self.backend_decoders)
|
||||
|
||||
|
|
@ -403,7 +406,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
|||
np_dtype = np.float16
|
||||
|
||||
self.backend_cls_prefill = partial(
|
||||
LowBitLlamaMultiDecoderlayer,
|
||||
LowBitMinicpmMultiDecoderlayer,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
num_layers=1,
|
||||
|
|
@ -445,7 +448,9 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
|
|||
seq_len = hidden_states.shape[1]
|
||||
|
||||
backend_cls = self.backend_cls_prefill
|
||||
inputs = (hidden_states.to(torch.float16), attention_mask, position_ids.to(torch.float16))
|
||||
inputs = (hidden_states.to(torch.float16),
|
||||
attention_mask.to(torch.int64),
|
||||
position_ids.to(torch.int64))
|
||||
inputs += (self.layer_norm_0, self.layer_norm_1)
|
||||
hidden_states, past_key, past_value = run_model(
|
||||
inputs, self.op_parameters, backend_cls, self.op_id, replica=2
|
||||
|
|
@ -578,9 +583,9 @@ def run_decode(
|
|||
|
||||
pad_mask = (0, pad_len)
|
||||
padded_causal_mask = F.pad(
|
||||
causal_mask.to(torch.float16), pad_mask, value=torch.finfo(torch.float16).min
|
||||
causal_mask.to(torch.int64), pad_mask, value=torch.iinfo(torch.int64).min
|
||||
)
|
||||
padded_causal_mask[:, :, :, -1] = 0.0
|
||||
padded_causal_mask[:, :, :, -1] = 0
|
||||
dist.recv(hidden_states, src=rank - 1)
|
||||
layer_outputs = multi_decoder(
|
||||
hidden_states,
|
||||
|
|
@ -831,9 +836,9 @@ class PrefillRunner:
|
|||
hidden_states = F.pad(hidden_states.to(torch.float16), (0, 0, 0, pad_len), value=0.0)
|
||||
position_ids = F.pad(position_ids, (0, pad_len), value=0)
|
||||
attention_mask = F.pad(
|
||||
attention_mask.to(torch.float16),
|
||||
attention_mask.to(torch.int64),
|
||||
(0, pad_len, 0, pad_len),
|
||||
value=torch.finfo(torch.float16).min,
|
||||
value=torch.iinfo(torch.int64).min,
|
||||
)
|
||||
|
||||
args = (hidden_states, position_ids, attention_mask, past_key_value)
|
||||
|
|
|
|||
|
|
@ -279,6 +279,45 @@ def convert_llm(model: torch.nn.Module,
|
|||
except:
|
||||
invalidInputError(False,
|
||||
"False to InitLLMPipeline.")
|
||||
elif model.config.model_type == "minicpm":
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
weight_dir = os.path.join(temp_dir, "model_weights")
|
||||
os.mkdir(weight_dir)
|
||||
layer_num = len(model.model.layers)
|
||||
from .minicpm import convert_minicpm_layer, convert_lm_head_and_embedding
|
||||
first_blob_path, last_blob_path = convert_lm_head_and_embedding(model, n_splits_linear,
|
||||
temp_dir, weight_dir)
|
||||
|
||||
param_list = []
|
||||
for layer_idx in range(0, layer_num):
|
||||
param_list.append((model, layer_idx, n_splits_linear, n_splits_down_proj,
|
||||
temp_dir, weight_dir, transpose_value_cache, kv_len, group_size))
|
||||
with Pool() as pool:
|
||||
result = pool.starmap(convert_minicpm_layer, param_list)
|
||||
|
||||
# Prefill Runner
|
||||
from ipex_llm.transformers.npu_models.convert_mp import convert_minicpm
|
||||
convert_minicpm(model,
|
||||
max_output_len=kv_len,
|
||||
max_prompt_len=max_prompt_len,
|
||||
decoder=False,
|
||||
transpose_value_cache=transpose_value_cache)
|
||||
|
||||
# patch attrs for generate
|
||||
model.kv_len = kv_len
|
||||
model.num_head = model.model.layers[0].self_attn.num_heads
|
||||
model.head_dim = model.model.layers[0].self_attn.head_dim
|
||||
model.num_layers = layer_num
|
||||
model.transpose_value_cache = transpose_value_cache
|
||||
|
||||
try:
|
||||
res = InitLLMPipeline("minicpm", kv_len, model.num_head, model.head_dim, layer_num,
|
||||
model.vocab_size, weight_dir, "model",
|
||||
first_blob_path, last_blob_path,
|
||||
os.path.join(temp_dir, "decoder_layer"))
|
||||
except:
|
||||
invalidInputError(False,
|
||||
"False to InitLLMPipeline.")
|
||||
else:
|
||||
invalidInputError(False,
|
||||
"Now we only support Llama2 / Llama3 / Baichuan2 for pipeline running.")
|
||||
|
|
|
|||
|
|
@ -0,0 +1,199 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import os
|
||||
from .common import update_names_of_IR_and_export_blob, LowBitLLMLMHead
|
||||
from intel_npu_acceleration_library.backend.factory import NNFactory
|
||||
|
||||
|
||||
class MiniCPMEmbedding(NNFactory):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size,
|
||||
embedding_dim,
|
||||
embedding_weight,
|
||||
padding_idx,
|
||||
dtype, # fp16
|
||||
scale_emb,
|
||||
device: str = "NPU",
|
||||
):
|
||||
super().__init__(False, device)
|
||||
self.vocab_size = vocab_size
|
||||
self.embedding_dim = embedding_dim
|
||||
self.padding_idx = padding_idx
|
||||
self.dtype = dtype
|
||||
|
||||
# define input
|
||||
weight = self.constant(embedding_weight)
|
||||
input = self.parameter((1, 1), dtype=np.int32)
|
||||
|
||||
if padding_idx == -1:
|
||||
padding_idx += vocab_size
|
||||
|
||||
axis_node = self.constant(np.array([0], dtype=np.int64))
|
||||
if padding_idx is not None:
|
||||
masked_embeddings = np.ones(weight.shape, dtype=np.float16)
|
||||
masked_embeddings[padding_idx, :] = 0.0 # mask
|
||||
|
||||
node_mask = self.constant(masked_embeddings)
|
||||
node_masked_w = self.eltwise_mul(weight, node_mask)
|
||||
res = self.gather(node_masked_w, input, axis_node, 0)
|
||||
else:
|
||||
res = self.gather(weight, input, axis_node, 0)
|
||||
res = res * scale_emb
|
||||
|
||||
# define outputs
|
||||
res = self.convert_to_fp16(res)
|
||||
|
||||
print("start compiling")
|
||||
self.compile()
|
||||
|
||||
|
||||
def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
|
||||
num_heads = model.model.layers[0].self_attn.num_heads
|
||||
num_key_value_heads = model.model.layers[0].self_attn.num_key_value_heads
|
||||
head_dim = model.model.layers[0].self_attn.head_dim
|
||||
rms_norm_eps = model.config.rms_norm_eps
|
||||
vocab_size = model.config.vocab_size
|
||||
model_norm = model.model.norm
|
||||
lm_head = model.lm_head
|
||||
if n_splits_linear == 1:
|
||||
weights = [(lm_head.weight, lm_head.scale)]
|
||||
else:
|
||||
lm_heads = lm_head.lm_heads
|
||||
lm_head_weights = []
|
||||
scales = []
|
||||
for i in range(n_splits_linear):
|
||||
lm_head_weights.append(lm_heads[i].weight)
|
||||
scales.append(lm_heads[i].scale)
|
||||
weights = [(torch.stack(lm_head_weights, axis=0),
|
||||
torch.stack(scales, axis=0))]
|
||||
if isinstance(weights[0], tuple):
|
||||
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
|
||||
else: # FP16 Linear
|
||||
np_dtype = np.float16
|
||||
|
||||
new_lm_head = LowBitLLMLMHead(
|
||||
[1, 1, num_heads * head_dim],
|
||||
num_heads=num_heads,
|
||||
max_seq_len=1,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
mode="decode",
|
||||
transpose_value=False,
|
||||
dtype=np_dtype,
|
||||
model_norm_weight=model_norm.weight.to(torch.float16),
|
||||
vocab_size=vocab_size,
|
||||
n_splits=n_splits_linear
|
||||
)
|
||||
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir)
|
||||
|
||||
# save weights bins files
|
||||
if n_splits_linear == 1:
|
||||
weight_numpy = [
|
||||
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
|
||||
]
|
||||
else:
|
||||
weight_numpy = [v.numpy() for v in weights[0]]
|
||||
|
||||
for idx, weight in enumerate(weight_numpy):
|
||||
bin_file = os.path.join(weight_dir, f"model_lm_head_input_{1+idx}.bin")
|
||||
weight.tofile(bin_file)
|
||||
|
||||
embedding_layer = model.model.embed_tokens
|
||||
new_embedding = MiniCPMEmbedding(
|
||||
vocab_size=model.config.vocab_size,
|
||||
embedding_dim=model.config.hidden_size,
|
||||
embedding_weight=embedding_layer.weight.to(torch.float16).detach().numpy(),
|
||||
padding_idx=model.config.pad_token_id,
|
||||
dtype=np.float16,
|
||||
scale_emb=model.config.scale_emb,
|
||||
)
|
||||
first_blob_path = update_names_of_IR_and_export_blob(new_embedding, "embedding",
|
||||
temp_dir)
|
||||
return first_blob_path, last_blob_path
|
||||
|
||||
|
||||
def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
||||
temp_dir, weight_dir, transpose_value_cache, kv_len, group_size):
|
||||
num_heads = model.model.layers[0].self_attn.num_heads
|
||||
num_key_value_heads = model.model.layers[0].self_attn.num_key_value_heads
|
||||
head_dim = model.model.layers[0].self_attn.head_dim
|
||||
intermediate_size = model.config.intermediate_size
|
||||
rms_norm_eps = model.config.rms_norm_eps
|
||||
num_hidden_layers = model.config.num_hidden_layers
|
||||
scale_depth = model.model.config.scale_depth
|
||||
|
||||
from ipex_llm.transformers.npu_models.minicpm_mp import LowBitMinicpmMultiDecoderlayer
|
||||
curr_layer = model.model.layers[layer_idx]
|
||||
attn_layer = curr_layer.self_attn
|
||||
mlp_layer = curr_layer.mlp
|
||||
|
||||
weights = []
|
||||
if n_splits_linear == 1:
|
||||
weights = [
|
||||
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
|
||||
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
|
||||
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
|
||||
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
|
||||
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
|
||||
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
|
||||
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
|
||||
]
|
||||
else:
|
||||
# TODO
|
||||
pass
|
||||
|
||||
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
||||
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
|
||||
layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
|
||||
layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
|
||||
|
||||
if isinstance(weights[0], tuple):
|
||||
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
|
||||
else: # FP16 Linear
|
||||
np_dtype = np.float16
|
||||
|
||||
single_decoder = LowBitMinicpmMultiDecoderlayer(
|
||||
[1, 1, num_heads * head_dim],
|
||||
input_layernorm_weights=[layer_norm_0],
|
||||
post_attn_layernorm_weights=[layer_norm_1],
|
||||
cached_cos=cached_cos,
|
||||
cached_sin=cached_sin,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
num_layers=1,
|
||||
max_seq_len=kv_len,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
scale_depth=scale_depth,
|
||||
num_hidden_layers=num_hidden_layers,
|
||||
mode="decode",
|
||||
transpose_value=transpose_value_cache,
|
||||
dtype=np_dtype,
|
||||
)
|
||||
rest_blob_path = update_names_of_IR_and_export_blob(single_decoder,
|
||||
f"decoder_layer_{layer_idx}",
|
||||
temp_dir)
|
||||
|
||||
for idx, (weight, scale) in enumerate(weights):
|
||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{5+idx*2}.bin")
|
||||
weight.numpy().tofile(bin_file)
|
||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{5+idx*2+1}.bin")
|
||||
scale.numpy().tofile(bin_file)
|
||||
del single_decoder
|
||||
Loading…
Reference in a new issue