diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4/README.md
new file mode 100644
index 00000000..3d0c5d58
--- /dev/null
+++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4/README.md
@@ -0,0 +1,265 @@
+# GLM-4
+In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-4 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) as a reference InternLM model.
+
+## 0. Requirements
+To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
+
+## Example 1: Predict Tokens using `generate()` API
+In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
+### 1. Install
+#### 1.1 Installation on Linux
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11
+conda activate llm
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+
+# install tiktoken required for GLM-4
+pip install tiktoken
+```
+
+#### 1.2 Installation on Windows
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11 libuv
+conda activate llm
+
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+
+# install tiktoken required for GLM-4
+pip install tiktoken
+```
+
+### 2. Configures OneAPI environment variables for Linux
+
+> [!NOTE]
+> Skip this step if you are running on Windows.
+
+This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
+
+```bash
+source /opt/intel/oneapi/setvars.sh
+```
+
+### 3. Runtime Configurations
+For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
+#### 3.1 Configurations for Linux
+
+
+For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
+
+```bash
+export USE_XETLA=OFF
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+
+
+For Intel Data Center GPU Max Series
+
+```bash
+export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+export ENABLE_SDP_FUSION=1
+```
+> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
+
+
+
+
+For Intel iGPU
+
+```bash
+export SYCL_CACHE_PERSISTENT=1
+export BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+#### 3.2 Configurations for Windows
+
+
+For Intel iGPU
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+set BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+
+
+For Intel Arc™ A-Series Graphics
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+> [!NOTE]
+> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
+### 4. Running examples
+
+```
+python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
+```
+
+Arguments info:
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4 model (e.g. `THUDM/glm-4-9b-chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'`.
+- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
+- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
+
+#### Sample Output
+##### [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat)
+```log
+Inference time: xxxx s
+-------------------- Prompt --------------------
+<|user|>
+AI是什么?
+<|assistant|>
+-------------------- Output --------------------
+
+AI是什么?
+
+AI,即人工智能(Artificial Intelligence),是指由人创造出来的,能够模拟、延伸和扩展人的智能的计算机系统或机器。人工智能的目标
+```
+
+```log
+Inference time: xxxx s
+-------------------- Prompt --------------------
+<|user|>
+What is AI?
+<|assistant|>
+-------------------- Output --------------------
+
+What is AI?
+
+Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term "art
+```
+
+## Example 2: Stream Chat using `stream_chat()` API
+In the example [streamchat.py](./streamchat.py), we show a basic use case for a GLM-4 model to stream chat, with IPEX-LLM INT4 optimizations.
+### 1. Install
+#### 1.1 Installation on Linux
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11
+conda activate llm
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+
+# install tiktoken required for GLM-4
+pip install tiktoken
+```
+
+#### 1.2 Installation on Windows
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11 libuv
+conda activate llm
+
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+
+# install tiktoken required for GLM-4
+pip install tiktoken
+```
+
+### 2. Configures OneAPI environment variables for Linux
+
+> [!NOTE]
+> Skip this step if you are running on Windows.
+
+This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
+
+```bash
+source /opt/intel/oneapi/setvars.sh
+```
+
+### 3. Runtime Configurations
+For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
+#### 3.1 Configurations for Linux
+
+
+For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
+
+```bash
+export USE_XETLA=OFF
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+
+
+For Intel Data Center GPU Max Series
+
+```bash
+export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+export ENABLE_SDP_FUSION=1
+```
+> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
+
+
+
+
+For Intel iGPU
+
+```bash
+export SYCL_CACHE_PERSISTENT=1
+export BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+#### 3.2 Configurations for Windows
+
+
+For Intel iGPU
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+set BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+
+
+For Intel Arc™ A-Series Graphics
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+> [!NOTE]
+> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
+### 4. Running examples
+
+**Stream Chat using `stream_chat()` API**:
+```
+python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
+```
+
+**Chat using `chat()` API**:
+```
+python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
+```
+
+Arguments info:
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'`.
+- `--question QUESTION`: argument defining the question to ask. It is default to be `"AI是什么?"`.
+- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4/generate.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4/generate.py
new file mode 100644
index 00000000..ebef3dae
--- /dev/null
+++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4/generate.py
@@ -0,0 +1,78 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import torch
+import time
+import argparse
+import numpy as np
+
+from ipex_llm.transformers import AutoModel
+from transformers import AutoTokenizer
+
+# you could tune the prompt based on your own model,
+# here the prompt tuning refers to https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py
+GLM4_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>"
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for GLM-4 model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4-9b-chat",
+ help='The huggingface repo id for the GLM-4 model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--prompt', type=str, default="AI是什么?",
+ help='Prompt to infer')
+ parser.add_argument('--n-predict', type=int, default=32,
+ help='Max tokens to predict')
+
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+
+ # Load model in 4 bit,
+ # which convert the relevant layers in the model into INT4 format
+ # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
+ # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
+ model = AutoModel.from_pretrained(model_path,
+ load_in_4bit=True,
+ optimize_model=True,
+ trust_remote_code=True,
+ use_cache=True)
+ model = model.to("xpu")
+
+ # Load tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
+ trust_remote_code=True)
+
+ # Generate predicted tokens
+ with torch.inference_mode():
+ prompt = GLM4_PROMPT_FORMAT.format(prompt=args.prompt)
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
+
+ # ipex_llm model needs a warmup, then inference time can be accurate
+ output = model.generate(input_ids,
+ max_new_tokens=args.n_predict)
+
+ st = time.time()
+
+ output = model.generate(input_ids,
+ max_new_tokens=args.n_predict)
+
+ torch.xpu.synchronize()
+ end = time.time()
+ output_str = tokenizer.decode(output[0], skip_special_tokens=True)
+ print(f'Inference time: {end-st} s')
+ print('-'*20, 'Prompt', '-'*20)
+ print(prompt)
+ print('-'*20, 'Output', '-'*20)
+ print(output_str)
diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4/streamchat.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4/streamchat.py
new file mode 100644
index 00000000..31be35d9
--- /dev/null
+++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4/streamchat.py
@@ -0,0 +1,69 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import torch
+import time
+import argparse
+import numpy as np
+
+from ipex_llm.transformers import AutoModel
+from transformers import AutoTokenizer
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Stream Chat for GLM-4 model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4-9b-chat",
+ help='The huggingface repo id for the GLM-4 model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
+ help='Qustion you want to ask')
+ parser.add_argument('--disable-stream', action="store_true",
+ help='Disable stream chat')
+
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+ disable_stream = args.disable_stream
+
+ # Load model in 4 bit,
+ # which convert the relevant layers in the model into INT4 format
+ # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
+ # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
+ model = AutoModel.from_pretrained(model_path,
+ trust_remote_code=True,
+ load_in_4bit=True,
+ optimize_model=True,
+ use_cache=True,
+ cpu_embedding=True)
+
+ model = model.to('xpu')
+
+ # Load tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
+ trust_remote_code=True)
+
+ with torch.inference_mode():
+ if disable_stream:
+ # Chat
+ response, history = model.chat(tokenizer, args.question, history=[])
+ print('-'*20, 'Chat Output', '-'*20)
+ print(response)
+ else:
+ # Stream chat
+ response_ = ""
+ print('-'*20, 'Stream Chat Output', '-'*20)
+ for response, history in model.stream_chat(tokenizer, args.question, history=[]):
+ print(response.replace(response_, ""), end="")
+ response_ = response
diff --git a/python/llm/example/GPU/PyTorch-Models/Model/glm4/README.md b/python/llm/example/GPU/PyTorch-Models/Model/glm4/README.md
new file mode 100644
index 00000000..6993df68
--- /dev/null
+++ b/python/llm/example/GPU/PyTorch-Models/Model/glm4/README.md
@@ -0,0 +1,147 @@
+# GLM-4
+In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate GLM-4 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) as a reference GLM-4 model.
+
+## 0. Requirements
+To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
+
+## Example: Predict Tokens using `generate()` API
+In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
+### 1. Install
+#### 1.1 Installation on Linux
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11
+conda activate llm
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+
+# install tiktoken required for GLM-4
+pip install tiktoken
+```
+
+#### 1.2 Installation on Windows
+We suggest using conda to manage environment:
+```bash
+conda create -n llm python=3.11 libuv
+conda activate llm
+
+# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
+pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
+
+# install tiktoken required for GLM-4
+pip install tiktoken
+```
+
+### 2. Configures OneAPI environment variables for Linux
+
+> [!NOTE]
+> Skip this step if you are running on Windows.
+
+This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
+
+```bash
+source /opt/intel/oneapi/setvars.sh
+```
+
+### 3. Runtime Configurations
+For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
+#### 3.1 Configurations for Linux
+
+
+For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
+
+```bash
+export USE_XETLA=OFF
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+
+
+For Intel Data Center GPU Max Series
+
+```bash
+export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
+export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
+export SYCL_CACHE_PERSISTENT=1
+export ENABLE_SDP_FUSION=1
+```
+> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
+
+
+
+
+For Intel iGPU
+
+```bash
+export SYCL_CACHE_PERSISTENT=1
+export BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+#### 3.2 Configurations for Windows
+
+
+For Intel iGPU
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+set BIGDL_LLM_XMX_DISABLED=1
+```
+
+
+
+
+
+For Intel Arc™ A-Series Graphics
+
+```cmd
+set SYCL_CACHE_PERSISTENT=1
+```
+
+
+
+> [!NOTE]
+> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
+### 4. Running examples
+
+```
+python ./generate.py --prompt 'What is AI?'
+```
+
+Arguments info:
+- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4 model (e.g. `THUDM/glm-4-9b-chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'`.
+- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
+- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
+
+#### Sample Output
+#### [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat)
+
+```log
+Inference time: xxxx s
+-------------------- Prompt --------------------
+<|user|>
+AI是什么?
+<|assistant|>
+-------------------- Output --------------------
+
+AI是什么?
+
+AI,即人工智能(Artificial Intelligence),是指由人创造出来的,能够模拟、延伸和扩展人的智能的计算机系统或机器。人工智能的目标
+```
+
+```log
+Inference time: xxxx s
+-------------------- Prompt --------------------
+<|user|>
+What is AI?
+<|assistant|>
+-------------------- Output --------------------
+
+What is AI?
+
+Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term "art
+```
diff --git a/python/llm/example/GPU/PyTorch-Models/Model/glm4/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/glm4/generate.py
new file mode 100644
index 00000000..3433ba29
--- /dev/null
+++ b/python/llm/example/GPU/PyTorch-Models/Model/glm4/generate.py
@@ -0,0 +1,77 @@
+#
+# Copyright 2016 The BigDL Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import torch
+import time
+import argparse
+
+from transformers import AutoModel, AutoTokenizer
+from ipex_llm import optimize_model
+
+# you could tune the prompt based on your own model,
+# here the prompt tuning refers to https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py
+GLM4_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>"
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for GLM-4 model')
+ parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4-9b-chat",
+ help='The huggingface repo id for the GLM-4 model to be downloaded'
+ ', or the path to the huggingface checkpoint folder')
+ parser.add_argument('--prompt', type=str, default="AI是什么?",
+ help='Prompt to infer')
+ parser.add_argument('--n-predict', type=int, default=32,
+ help='Max tokens to predict')
+
+ args = parser.parse_args()
+ model_path = args.repo_id_or_model_path
+
+ # Load model
+ # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
+ # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
+ model = AutoModel.from_pretrained(model_path,
+ trust_remote_code=True,
+ torch_dtype = 'auto',
+ low_cpu_mem_usage=True,
+ use_cache=True)
+
+ # With only one line to enable IPEX-LLM optimization on model
+ model = optimize_model(model)
+ model = model.to('xpu')
+
+ # Load tokenizer
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
+ trust_remote_code=True)
+
+ # Generate predicted tokens
+ with torch.inference_mode():
+ prompt = GLM4_PROMPT_FORMAT.format(prompt=args.prompt)
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
+
+ # ipex_llm model needs a warmup, then inference time can be accurate
+ output = model.generate(input_ids,
+ max_new_tokens=args.n_predict)
+
+ st = time.time()
+ output = model.generate(input_ids,
+ max_new_tokens=args.n_predict)
+ torch.xpu.synchronize()
+ end = time.time()
+ output_str = tokenizer.decode(output[0], skip_special_tokens=True)
+ print(f'Inference time: {end-st} s')
+ print('-'*20, 'Prompt', '-'*20)
+ print(prompt)
+ print('-'*20, 'Output', '-'*20)
+ print(output_str)