Consolidated C-Eval Benchmark Guide for Single-GPU and Multi-GPU Environments (#12618)

* run c-eval on multi-GPUs

* Update README.md
This commit is contained in:
Shaojun Liu 2024-12-26 15:23:32 +08:00 committed by GitHub
parent ccc4055058
commit 40a7d2b4f0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -1,23 +1,30 @@
## C-Eval Benchmark Test
## C-Eval Benchmark Test Guide
C-Eval benchmark test allows users to test on [C-Eval](https://cevalbenchmark.com) datasets, which is a multi-level multi-discipline chinese evaluation suite for foundation models. It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels. Please check [paper](https://arxiv.org/abs/2305.08322) and [github repo](https://github.com/hkust-nlp/ceval) for more information.
This guide provides instructions for running the C-Eval benchmark test in both single-GPU and multi-GPU environments. [C-Eval](https://cevalbenchmark.com) is a comprehensive multi-level, multi-discipline Chinese evaluation suite for foundational models. It consists of 13,948 multiple-choice questions spanning 52 diverse disciplines and four difficulty levels. For more details, see the [C-Eval paper](https://arxiv.org/abs/2305.08322) and [GitHub repository](https://github.com/hkust-nlp/ceval).
### Download dataset
Please download and unzip the dataset for evaluation.
```shell
---
### Single-GPU Environment
#### 1. Download Dataset
Download and unzip the dataset for evaluation:
```bash
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip
mkdir data
mv ceval-exam.zip data
cd data; unzip ceval-exam.zip
```
### Run
You can run evaluation with following command.
```shell
#### 2. Run Evaluation
Use the following command to run the evaluation:
```bash
bash run.sh
```
+ `run.sh`
```shell
Contents of `run.sh`:
```bash
export IPEX_LLM_LAST_LM_HEAD=0
python eval.py \
--model_path "path to model" \
@ -29,4 +36,113 @@ python eval.py \
> **Note**
>
> `eval_type` there is two types of evaluation, first type is `validation`, which runs on validation dataset and output evaluation scores. The second type is `test`, which runs on test dataset and output `submission.json` file for submission on https://cevalbenchmark.com to get the evaluation score.
> - `eval_type`: There are two types of evaluations:
> - `validation`: Runs on the validation dataset and outputs evaluation scores.
> - `test`: Runs on the test dataset and outputs a `submission.json` file for submission on [C-Eval](https://cevalbenchmark.com) to get evaluation scores.
---
### Multi-GPU Environment
#### 1. Prepare Environment
1. **Set Docker Image and Container Name**:
```bash
export DOCKER_IMAGE=intelanalytics/ipex-llm-serving-xpu:latest
export CONTAINER_NAME=ceval-benchmark
```
2. **Start Docker Container**:
```bash
docker run -td \
--privileged \
--net=host \
--device=/dev/dri \
--name=$CONTAINER_NAME \
-v /home/intel/LLM:/llm/models/ \
-e no_proxy=localhost,127.0.0.1 \
-e http_proxy=$HTTP_PROXY \
-e https_proxy=$HTTPS_PROXY \
--shm-size="16g" \
$DOCKER_IMAGE
```
3. **Enter the Container**:
```bash
docker exec -it $CONTAINER_NAME bash
```
#### 2. Configure `lm-evaluation-harness`
1. **Clone the Repository**:
```bash
git clone https://github.com/EleutherAI/lm-evaluation-harness
cd lm-evaluation-harness
```
2. **Update Multi-GPU Support File**:
Update `lm_eval/models/vllm_causallms.py` based on the following link:
[Update Multi-GPU Support File](https://github.com/EleutherAI/lm-evaluation-harness/compare/main...liu-shaojun:lm-evaluation-harness:multi-arc?expand=1)
3. **Install Dependencies**:
```bash
pip install -e .
```
#### 3. Configure Environment Variables
Set environment variables required for multi-GPU execution:
```bash
export CCL_WORKER_COUNT=2
export CCL_ATL_TRANSPORT=ofi
export CCL_ZE_IPC_EXCHANGE=sockets
export CCL_ATL_SHM=1
export CCL_SAME_STREAM=1
export CCL_BLOCKING_WAIT=0
export SYCL_CACHE_PERSISTENT=1
export FI_PROVIDER=shm
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=2
export TORCH_LLM_ALLREDUCE=0
```
Load Intel OneCCL environment variables:
```bash
source /opt/intel/1ccl-wks/setvars.sh
```
#### 4. Run Evaluation
Use the following command to run the C-Eval benchmark:
```bash
lm_eval --model vllm \
--model_args pretrained=/llm/models/CodeLlama-34b/,dtype=float16,max_model_len=2048,device=xpu,load_in_low_bit=fp8,tensor_parallel_size=4,distributed_executor_backend="ray",gpu_memory_utilization=0.90,trust_remote_code=True \
--tasks ceval-valid \
--batch_size 2 \
--num_fewshot 0 \
--output_path c-eval-result
```
#### 5. Notes
- **Model and Parameter Adjustments**:
- **`pretrained`**: Replace with the desired model path, e.g., `/llm/models/CodeLlama-7b/`.
- **`load_in_low_bit`**: Set to `fp8` or other precision options based on hardware and task requirements.
- **`tensor_parallel_size`**: Adjust based on the number of GPUs and memory. Recommended to match the GPU count.
- **`batch_size`**: Increase to accelerate testing, but ensure it does not cause OOM errors. Recommended values are `2` or `3`.
- **`num_fewshot`**: Specify the number of few-shot examples. Default is `0`. Increasing this value can improve model contextual understanding but may significantly increase input length and runtime.
- **Logging**:
To log both to the console and a file, use:
```bash
lm_eval --model vllm ... | tee c-eval.log
```
- **Container Debugging**:
Ensure the paths for the model and tasks are correctly set, e.g., check if `/llm/models/` is properly mounted in the container.
---
By following the above steps, you can successfully run the C-Eval benchmark in both single-GPU and multi-GPU environments.