Remove chatglm_C Module to Eliminate LGPL Dependency (#11178)

* remove chatglm_C.**.pyd to solve ngsolve weak copyright vunl

* fix style check error

* remove chatglm native int4 from langchain
This commit is contained in:
Shaojun Liu 2024-05-31 17:03:11 +08:00 committed by GitHub
parent 50b5f4476f
commit 401013a630
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 19 additions and 690 deletions

View file

@ -72,12 +72,6 @@ jobs:
export http_proxy=${HTTP_PROXY} export http_proxy=${HTTP_PROXY}
export https_proxy=${HTTPS_PROXY} export https_proxy=${HTTPS_PROXY}
yum install -y gcc-toolset-11 cmake git yum install -y gcc-toolset-11 cmake git
conda remove -n python39 --all -y
conda create -n python39 python=3.9 -y
conda remove -n python310 --all -y
conda create -n python310 python=3.10 -y
conda remove -n python311 --all -y
conda create -n python311 python=3.11 -y
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3 - uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
with: with:
repository: "intel-analytics/llm.cpp" repository: "intel-analytics/llm.cpp"
@ -109,42 +103,6 @@ jobs:
mv build/libstarcoder-api.so release/libstarcoder-api.so mv build/libstarcoder-api.so release/libstarcoder-api.so
mv build/quantize-starcoder release/quantize-starcoder mv build/quantize-starcoder release/quantize-starcoder
mv build/libstarcoder.so release/libstarcoder_avxvnni.so mv build/libstarcoder.so release/libstarcoder_avxvnni.so
- name: Build Chatglm
shell: bash
run: |
source activate python39 || conda activate python39
cd src/chatglm
scl enable gcc-toolset-11 "cmake -B build"
scl enable gcc-toolset-11 "cmake --build build --config Release -j"
- name: Move Chatglm binaries
shell: bash
run: |
mv src/chatglm/build/main release/main-chatglm_vnni
mv src/chatglm/build/_C.cpython-39-x86_64-linux-gnu.so release/chatglm_C.cpython-39-x86_64-linux-gnu.so
- name: Build Chatglm Py310
shell: bash
run: |
source activate python310 || conda activate python310
cd src/chatglm
rm -r build
scl enable gcc-toolset-11 "cmake -B build"
scl enable gcc-toolset-11 "cmake --build build --config Release -j"
- name: Move Chatglm binaries Py310
shell: bash
run: |
mv src/chatglm/build/_C.cpython-310-x86_64-linux-gnu.so release/chatglm_C.cpython-310-x86_64-linux-gnu.so
- name: Build Chatglm Py311
shell: bash
run: |
source activate python311 || conda activate python311
cd src/chatglm
rm -r build
scl enable gcc-toolset-11 "cmake -B build"
scl enable gcc-toolset-11 "cmake --build build --config Release -j"
- name: Move Chatglm binaries Py311
shell: bash
run: |
mv src/chatglm/build/_C.cpython-311-x86_64-linux-gnu.so release/chatglm_C.cpython-311-x86_64-linux-gnu.so
- name: Archive build files - name: Archive build files
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:
@ -155,9 +113,6 @@ jobs:
shell: bash shell: bash
run: | run: |
make clean make clean
conda remove -n python39 --all -y
conda remove -n python310 --all -y
conda remove -n python311 --all -y
check-linux-avx512-artifact: check-linux-avx512-artifact:
if: ${{contains(inputs.platform, 'Linux')}} if: ${{contains(inputs.platform, 'Linux')}}
@ -286,8 +241,6 @@ jobs:
export http_proxy=${HTTP_PROXY} export http_proxy=${HTTP_PROXY}
export https_proxy=${HTTPS_PROXY} export https_proxy=${HTTPS_PROXY}
yum install -y gcc-toolset-11 cmake git yum install -y gcc-toolset-11 cmake git
conda remove -n python39 --all -y
conda create -n python39 python=3.9 -y
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3 - uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
with: with:
repository: "intel-analytics/llm.cpp" repository: "intel-analytics/llm.cpp"
@ -299,11 +252,6 @@ jobs:
run: | run: |
scl enable gcc-toolset-11 "cmake -DONLYAVX=OFF -DONLYAVX2=OFF -B build" scl enable gcc-toolset-11 "cmake -DONLYAVX=OFF -DONLYAVX2=OFF -B build"
scl enable gcc-toolset-11 "cmake --build build --config Release -j" scl enable gcc-toolset-11 "cmake --build build --config Release -j"
# build chatglm
source activate python39 || conda activate python39
cd src/chatglm
scl enable gcc-toolset-11 "cmake -B build"
scl enable gcc-toolset-11 "cmake --build build --config Release -j"
- name: Move amx release binary - name: Move amx release binary
shell: bash shell: bash
run: | run: |
@ -316,9 +264,6 @@ jobs:
mv build/libgptneox.so amx_release/libgptneox_amx.so mv build/libgptneox.so amx_release/libgptneox_amx.so
mv build/quantize-starcoder amx_release/quantize-starcoder_amx mv build/quantize-starcoder amx_release/quantize-starcoder_amx
mv build/libstarcoder.so amx_release/libstarcoder_amx.so mv build/libstarcoder.so amx_release/libstarcoder_amx.so
# chatglm binary files
mv src/chatglm/build/main amx_release/main-chatglm_amx
# mv src/chatglm/build/_C.cpython-39-x86_64-linux-gnu.so amx_release/chatglm_C.cpython-39-x86_64-linux-gnu.so
- name: Archive amx build files - name: Archive amx build files
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:
@ -329,7 +274,6 @@ jobs:
shell: bash shell: bash
run: | run: |
make clean make clean
conda remove -n python39 --all -y
check-windows-avx2-artifact: check-windows-avx2-artifact:
if: ${{contains(inputs.platform, 'Windows')}} if: ${{contains(inputs.platform, 'Windows')}}
@ -393,10 +337,6 @@ jobs:
needs: check-windows-avx-vnni-artifact needs: check-windows-avx-vnni-artifact
if: needs.check-windows-avx-vnni-artifact.outputs.if-exists == 'false' if: needs.check-windows-avx-vnni-artifact.outputs.if-exists == 'false'
steps: steps:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.9"
- name: Set access token - name: Set access token
run: | run: |
echo "github_access_token=$env:GITHUB_ACCESS_TOKEN" >> $env:GITHUB_ENV echo "github_access_token=$env:GITHUB_ACCESS_TOKEN" >> $env:GITHUB_ENV
@ -438,47 +378,6 @@ jobs:
# mv build/Release/main-starcoder.exe release/main-starcoder_vnni.exe # mv build/Release/main-starcoder.exe release/main-starcoder_vnni.exe
mv build/Release/quantize-starcoder.exe release/quantize-starcoder_vnni.exe mv build/Release/quantize-starcoder.exe release/quantize-starcoder_vnni.exe
mv build/Release/starcoder.dll release/libstarcoder_vnni.dll mv build/Release/starcoder.dll release/libstarcoder_vnni.dll
- name: Build Chatglm
shell: powershell
run: |
cd src/chatglm
cmake -DAVXVNNI=ON -B build
cmake --build build --config Release -j
- name: Move Chatglm binaries
shell: powershell
run: |
mv src/chatglm/build/Release/main.exe release/main-chatglm_vnni.exe
mv src/chatglm/build/Release/_C.cp39-win_amd64.pyd release/chatglm_C.cp39-win_amd64.pyd
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Build Chatglm Py310
shell: powershell
run: |
cd src/chatglm
rm -r build
cmake -DAVXVNNI=ON -B build
cmake --build build --config Release -j
- name: Move Chatglm binaries Py310
shell: powershell
run: |
mv src/chatglm/build/Release/_C.cp310-win_amd64.pyd release/chatglm_C.cp310-win_amd64.pyd
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Build Chatglm Py311
shell: powershell
run: |
cd src/chatglm
rm -r build
cmake -DAVXVNNI=ON -B build
cmake --build build --config Release -j
- name: Move Chatglm binaries Py311
shell: powershell
run: |
mv src/chatglm/build/Release/_C.cp311-win_amd64.pyd release/chatglm_C.cp311-win_amd64.pyd
- name: Archive build files - name: Archive build files
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:

View file

@ -31,7 +31,7 @@ You may also convert Hugging Face *Transformers* models into native INT4 format,
```eval_rst ```eval_rst
.. note:: .. note::
* Currently only llama/bloom/gptneox/starcoder/chatglm model families are supported; for other models, you may use the Hugging Face ``transformers`` INT4 format as described `above <./langchain_api.html#using-hugging-face-transformers-int4-format>`_. * Currently only llama/bloom/gptneox/starcoder model families are supported; for other models, you may use the Hugging Face ``transformers`` INT4 format as described `above <./langchain_api.html#using-hugging-face-transformers-int4-format>`_.
* You may choose the corresponding API developed for specific native models to load the converted model. * You may choose the corresponding API developed for specific native models to load the converted model.
``` ```
@ -41,9 +41,9 @@ from ipex_llm.langchain.llms import LlamaLLM
from ipex_llm.langchain.embeddings import LlamaEmbeddings from ipex_llm.langchain.embeddings import LlamaEmbeddings
from langchain.chains.question_answering import load_qa_chain from langchain.chains.question_answering import load_qa_chain
# switch to ChatGLMEmbeddings/GptneoxEmbeddings/BloomEmbeddings/StarcoderEmbeddings to load other models # switch to GptneoxEmbeddings/BloomEmbeddings/StarcoderEmbeddings to load other models
embeddings = LlamaEmbeddings(model_path='/path/to/converted/model.bin') embeddings = LlamaEmbeddings(model_path='/path/to/converted/model.bin')
# switch to ChatGLMLLM/GptneoxLLM/BloomLLM/StarcoderLLM to load other models # switch to GptneoxLLM/BloomLLM/StarcoderLLM to load other models
ipex_llm = LlamaLLM(model_path='/path/to/converted/model.bin') ipex_llm = LlamaLLM(model_path='/path/to/converted/model.bin')
doc_chain = load_qa_chain(ipex_llm, ...) doc_chain = load_qa_chain(ipex_llm, ...)

View file

@ -31,7 +31,7 @@ IPEX-LLM provides ``TransformersLLM`` and ``TransformersPipelineLLM``, which imp
Native Model Native Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For ``llama``/``chatglm``/``bloom``/``gptneox``/``starcoder`` model families, you could also use the following LLM wrappers with the native (cpp) implementation for maximum performance. For ``llama``/``bloom``/``gptneox``/``starcoder`` model families, you could also use the following LLM wrappers with the native (cpp) implementation for maximum performance.
.. tabs:: .. tabs::
@ -47,18 +47,6 @@ For ``llama``/``chatglm``/``bloom``/``gptneox``/``starcoder`` model families, yo
.. automethod:: stream .. automethod:: stream
.. automethod:: get_num_tokens .. automethod:: get_num_tokens
.. tab:: ChatGLM
.. autoclass:: ipex_llm.langchain.llms.ChatGLMLLM
:members:
:undoc-members:
:show-inheritance:
:exclude-members: ggml_model, ggml_module, client, model_path, kwargs
.. automethod:: validate_environment
.. automethod:: stream
.. automethod:: get_num_tokens
.. tab:: Bloom .. tab:: Bloom
.. autoclass:: ipex_llm.langchain.llms.BloomLLM .. autoclass:: ipex_llm.langchain.llms.BloomLLM

View file

@ -36,8 +36,7 @@ def load(model_path, model_family, n_threads):
"llama": LlamaForCausalLM, "llama": LlamaForCausalLM,
"gptneox": GptneoxForCausalLM, "gptneox": GptneoxForCausalLM,
"bloom": BloomForCausalLM, "bloom": BloomForCausalLM,
"starcoder": StarcoderForCausalLM, "starcoder": StarcoderForCausalLM
"chatglm": ChatGLMForCausalLM
} }
if model_family in model_family_to_class: if model_family in model_family_to_class:
@ -55,7 +54,7 @@ def load(model_path, model_family, n_threads):
def inference(llm, repo_id_or_model_path, model_family, prompt): def inference(llm, repo_id_or_model_path, model_family, prompt):
if model_family in ['llama', 'gptneox', 'bloom', 'starcoder', 'chatglm']: if model_family in ['llama', 'gptneox', 'bloom', 'starcoder']:
# ------ Option 1: Use IPEX-LLM based tokenizer # ------ Option 1: Use IPEX-LLM based tokenizer
print('-'*20, ' IPEX-LLM based tokenizer ', '-'*20) print('-'*20, ' IPEX-LLM based tokenizer ', '-'*20)
st = time.time() st = time.time()
@ -109,9 +108,9 @@ def main():
parser.add_argument('--thread-num', type=int, default=2, required=True, parser.add_argument('--thread-num', type=int, default=2, required=True,
help='Number of threads to use for inference') help='Number of threads to use for inference')
parser.add_argument('--model-family', type=str, default='llama', required=True, parser.add_argument('--model-family', type=str, default='llama', required=True,
choices=["llama", "llama2", "bloom", "gptneox", "starcoder", "chatglm"], choices=["llama", "llama2", "bloom", "gptneox", "starcoder"],
help="The model family of the large language model (supported option: 'llama', 'llama2', " help="The model family of the large language model (supported option: 'llama', 'llama2', "
"'gptneox', 'bloom', 'starcoder', 'chatglm')") "'gptneox', 'bloom', 'starcoder')")
parser.add_argument('--repo-id-or-model-path', type=str, required=True, parser.add_argument('--repo-id-or-model-path', type=str, required=True,
help='The path to the huggingface checkpoint folder') help='The path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default='Once upon a time, there existed a little girl who liked to have adventures. ', parser.add_argument('--prompt', type=str, default='Once upon a time, there existed a little girl who liked to have adventures. ',

View file

@ -86,12 +86,7 @@ windows_binarys = [
"quantize-llama_vnni.exe", "quantize-llama_vnni.exe",
"quantize-gptneox_vnni.exe", "quantize-gptneox_vnni.exe",
"quantize-bloom_vnni.exe", "quantize-bloom_vnni.exe",
"quantize-starcoder_vnni.exe", "quantize-starcoder_vnni.exe"
"main-chatglm_vnni.exe",
"chatglm_C.cp39-win_amd64.pyd",
"chatglm_C.cp310-win_amd64.pyd",
"chatglm_C.cp311-win_amd64.pyd"
] ]
linux_binarys = [ linux_binarys = [
"libllama_avx.so", "libllama_avx.so",
@ -125,13 +120,7 @@ linux_binarys = [
"main-llama", "main-llama",
"main-gptneox", "main-gptneox",
"main-bloom", "main-bloom",
"main-starcoder", "main-starcoder"
"main-chatglm_vnni",
"main-chatglm_amx",
"chatglm_C.cpython-39-x86_64-linux-gnu.so",
"chatglm_C.cpython-310-x86_64-linux-gnu.so",
"chatglm_C.cpython-311-x86_64-linux-gnu.so"
] ]
ext_lib_urls = [ ext_lib_urls = [

View file

@ -76,10 +76,6 @@ def _convert_starcoder(model_path, outfile_dir, outtype):
_convert_starcoder_hf_to_ggml(model_path, outfile_dir, outtype) _convert_starcoder_hf_to_ggml(model_path, outfile_dir, outtype)
def _convert_chatglm(model_path, outfile_dir, outtype):
return _convert_chatglm_hf_to_ggml(model_path, outfile_dir, outtype)
def _convert_to_ggml(model_path: str, outfile_dir: str, def _convert_to_ggml(model_path: str, outfile_dir: str,
model_family: str = 'llama', outtype: str="fp16"): model_family: str = 'llama', outtype: str="fp16"):
""" """

View file

@ -16,7 +16,7 @@
import os import os
import time import time
from pathlib import Path from pathlib import Path
from ipex_llm.ggml.convert import _convert_to_ggml, _convert_chatglm from ipex_llm.ggml.convert import _convert_to_ggml
from ipex_llm.ggml.quantize import quantize from ipex_llm.ggml.quantize import quantize
from ipex_llm.utils.common import invalidInputError from ipex_llm.utils.common import invalidInputError
import argparse import argparse
@ -54,9 +54,9 @@ def convert_model(input_path: str,
# make sure directory exists # make sure directory exists
os.makedirs(output_path, exist_ok=True) os.makedirs(output_path, exist_ok=True)
# check input value # check input value
invalidInputError(model_family in ['llama', 'bloom', 'gptneox', 'starcoder', 'chatglm'], invalidInputError(model_family in ['llama', 'bloom', 'gptneox', 'starcoder'],
"Now we only support quantization of model \ "Now we only support quantization of model \
family('llama', 'bloom', 'gptneox', 'starcoder', 'chatglm')", family('llama', 'bloom', 'gptneox', 'starcoder')",
"{} is not in the list.".format(model_family)) "{} is not in the list.".format(model_family))
invalidInputError(os.path.isdir(output_path), invalidInputError(os.path.isdir(output_path),
"The output_path {} was not a directory".format(output_path)) "The output_path {} was not a directory".format(output_path))
@ -78,12 +78,6 @@ def convert_model(input_path: str,
family('llama', 'gptneox', 'starcoder')", family('llama', 'gptneox', 'starcoder')",
"{} is not in the list.".format(model_family)) "{} is not in the list.".format(model_family))
# chatglm merges convertion and quantization into one operation.
if model_family == 'chatglm':
return _convert_chatglm(model_path=input_path,
outfile_dir=output_path,
outtype=dtype)
if tmp_path is not None: if tmp_path is not None:
model_name = Path(input_path).stem model_name = Path(input_path).stem
tmp_ggml_file_path = os.path.join(tmp_path, f'{model_name}_{int(time.time())}') tmp_ggml_file_path = os.path.join(tmp_path, f'{model_name}_{int(time.time())}')

View file

@ -1,22 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
from .chatglm import ChatGLM

View file

@ -1,428 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ===========================================================================
#
# This file is adapted from
# https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama.py
#
# MIT License
#
# Copyright (c) 2023 Andrei Betlen
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
from .chatglm_cpp import chatglm_load, chatglm_tokenize, chatglm_detokenize, \
chatglm_forward, chatglm_eos_token
from ipex_llm.utils.common import invalidInputError
from ipex_llm.ggml.model.generation import GenerationMixin
from typing import List, Optional, Generator, Sequence, Union
import time
import uuid
import warnings
class ChatGLM(GenerationMixin):
"""High-level Python wrapper for a chatglm.cpp model."""
def __init__(
self,
model_path: str,
n_ctx: int = 512,
n_parts: int = -1,
n_gpu_layers: int = 0,
seed: int = -1,
f16_kv: bool = True,
logits_all: bool = False,
vocab_only: bool = False,
use_mmap: bool = False,
use_mlock: bool = False,
embedding: bool = False,
n_threads: Optional[int] = -1,
n_batch: int = 512,
last_n_tokens_size: int = 64,
lora_base: Optional[str] = None,
lora_path: Optional[str] = None,
verbose: bool = True,
):
"""Load a chatglm.cpp model from `model_path`.
Args:
model_path: Path to the model.
n_ctx: Maximum context size.
n_parts: Number of parts to split the model into. If -1, the number of parts
is automatically determined.
seed: Random seed. For default value -1, current timestamp is used as seed.
f16_kv: Use half-precision for key/value cache.
logits_all: Return logits for all tokens, not just the last token.
vocab_only: Only load the vocabulary no weights.
use_mmap: Use mmap if possible.
use_mlock: Force the system to keep the model in RAM.
embedding: Embedding mode only.
n_threads: Number of threads to use. Default to be -1, means auto.
n_batch: Maximum number of prompt tokens to batch together when calling chatglm_eval.
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
lora_base: Optional path to base model, useful if using a quantized base model and
you want to apply LoRA to an f16 model.
lora_path: Path to a LoRA file to apply to the model.
verbose: Print verbose output to stderr.
Raises:
ValueError: If the model path does not exist.
Returns:
A ChatGLM instance.
"""
self.model_path = model_path
self.ctx = chatglm_load(model_path, use_mmap=use_mmap, n_ctx=n_ctx, n_threads=n_threads)
self.n_ctx = n_ctx
self.n_parts = n_parts
self.n_gpu_layers = n_gpu_layers
self.f16_kv = f16_kv
self.seed = seed
self.logits_all = logits_all
self.vocab_only = vocab_only
self.use_mmap = use_mmap
self.use_mlock = use_mlock
self.embedding = embedding
self.n_threads = n_threads
self.n_batch = n_batch
self.last_n_tokens_size = last_n_tokens_size
self.lora_base = lora_base
self.lora_path = lora_path
self.verbose = verbose
# TODO: Some parameters are temporarily not supported
unsupported_arg = {'n_parts': -1, 'n_gpu_layers': 0, 'f16_kv': True, 'logits_all': False,
'vocab_only': False, 'use_mlock': False, 'embedding': False,
'n_batch': 512, 'last_n_tokens_size': 64, 'lora_base': None,
'lora_path': None, 'verbose': True}
for arg in unsupported_arg.keys():
if getattr(self, arg) != unsupported_arg[arg]:
warnings.warn(f"The parameter {arg} is temporarily unsupported, "
"please use the default value.")
def __call__(
self,
prompt: str,
suffix: Optional[str] = None,
max_tokens: int = 128,
temperature: float = 0.95,
top_p: float = 0.7,
logprobs: Optional[int] = None,
echo: bool = False,
stop: Optional[Union[str, List[str]]]=[],
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
repeat_penalty: float = 1.1,
top_k: int = 0,
stream: bool = False,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
):
# TODO: Some parameters are temporarily not supported
# Unsupported parameters are checked in `_supported_call`
return self._supported_call(prompt, max_tokens, stream, temperature, top_p, top_k,
stop, model, suffix, logprobs, echo, frequency_penalty,
presence_penalty, repeat_penalty, tfs_z, mirostat_mode,
mirostat_tau, mirostat_eta)
def _supported_call(self, prompt: str, max_tokens: int, stream: bool,
temperature: float, top_p: float, top_k: int,
stop: Optional[List[str]] = [], model: Optional[str] = None, *args):
# Check unsupporeted parameters
unsupported_arg = ['suffix', 'logprobs', 'echo',
'frequency_penalty', 'presence_penalty', 'repeat_penalty',
'tfs_z', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'model']
defult_value = {'suffix': None, 'logprobs': None, 'echo': False,
'frequency_penalty': 0.0, 'presence_penalty': 0.0,
'repeat_penalty': 1.1, 'tfs_z': 1.0, 'mirostat_mode': 0,
'mirostat_tau': 5.0, 'mirostat_eta': 0.1}
for index in range(len(args)):
if args[index] != defult_value[unsupported_arg[index]]:
warnings.warn(f"The parameter {unsupported_arg[index]} is temporarily "
"unsupported, please use the default value.")
if stream:
return self.stream(prompt, max_tokens, temperature, top_p, top_k, stop, model)
else:
return self._eval(prompt, max_tokens, temperature, top_p, top_k, stop, model)
def _eval(self, prompt: str, max_tokens: int, temperature: float, top_p: float, top_k: int,
stop: Optional[List[str]] = [], model: Optional[str] = None):
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
created: int = int(time.time())
if model is None:
model_name = self.model_path
else:
model_name = model
input_tokens = self._tokenize(prompt)
prompt_len = len(input_tokens)
if max_tokens < 1:
return {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": prompt,
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage":
{
"prompt_tokens": prompt_len,
"completion_tokens": 0,
"total_tokens": prompt_len,
}
}
for i in range(max_tokens):
token = self.forward(input_ids=input_tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature)
input_tokens.append(token)
if token == self.eos_token():
break
text = self.detokenize(input_tokens)
split_text = text[len(prompt):]
split_text.rstrip('<EFBFBD>') # remove partial emoji
if stop != []:
for stop_word in stop:
split_text = split_text.split(stop_word)[0]
if split_text != text:
finish_reason = "stop"
else:
finish_reason = None
completion_len = len(input_tokens) - prompt_len
return {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": prompt + split_text,
"index": 0,
"logprobs": None,
"finish_reason": finish_reason,
}
],
"usage": {
"prompt_tokens": prompt_len,
"completion_tokens": completion_len,
"total_tokens": prompt_len + completion_len,
}
}
def stream(self, prompt: str, max_tokens: int, temperature: float, top_p: float, top_k: int,
stop: Optional[List[str]] = [], model: Optional[str] = None):
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
created: int = int(time.time())
if model is None:
model_name = self.model_path
else:
model_name = model
input_tokens = self._tokenize(prompt)
prompt_len = len(input_tokens)
if max_tokens < 1:
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": prompt,
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage": {
"prompt_tokens": prompt_len
}
}
else:
history_text = prompt
for i in range(max_tokens):
token = self.forward(input_ids=input_tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature)
input_tokens.append(token)
if token == self.eos_token():
print('\n')
break
text = self.detokenize(input_tokens)
if text.endswith('<EFBFBD>'):
# generated new token is part of an emoji
# (some emoji consists of multiple tokens)
# continue to generate more tokens to decode this emoji
continue
text = text[len(history_text):]
history_text += text
yield {
"id": completion_id,
"object": "text_completion",
"created": created,
"model": model_name,
"choices": [
{
"text": text,
"index": 0,
"logprobs": None,
"finish_reason": None,
}
],
"usage": {
"prompt_tokens": prompt_len
}
}
def _tokenize(self, text: str, *args) -> List[int]:
"""Tokenize a string.
Args:
text: The string to tokenize.
Raises:
RuntimeError: If the tokenization failed.
Returns:
A list of tokens.
"""
warnings.warn("The parameter `add_bos` is unsupported, please use the default value.")
return chatglm_tokenize(self.ctx, text)
def detokenize(self, tokens: List[int]) -> str:
"""Detokenize a list of tokens.
Args:
tokens: The list of tokens to detokenize.
Returns:
The detokenized string.
"""
if isinstance(tokens, int):
tokens = [tokens]
return chatglm_detokenize(self.ctx, tokens)
def forward(self,
input_ids: List[int],
do_sample: bool = True,
top_k: int = 0,
top_p: float = 0.7,
temperature: float = 0.95,) -> int:
return chatglm_forward(ctx=self.ctx,
input_ids=input_ids,
do_sample=do_sample,
top_k=top_k,
top_p=top_p,
temperature=temperature)
def eos_token(self) -> int:
return chatglm_eos_token(self.ctx)
def _generate(
self,
tokens: Sequence[int],
top_k: int = 0,
top_p: float = 0.7,
temp: float = 0.95,
repeat_penalty: float = 1.1,
reset: bool = True,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
) -> Generator[int, Optional[Sequence[int]], None]:
"""Create a generator of tokens from a prompt.
Examples:
>>> llm = ChatGLM(your_model_path)
>>> tokens = llm._tokenize(b"Learning English is")
>>> for token in llm._generate(tokens):
>>> print(llm.detokenize([token]).decode("utf-8", errors="ignore"))
Args:
tokens: The prompt tokens.
Yields:
The generated tokens.
"""
# TODO: Some parameters are temporarily not supported
# Unsupported parameters are checked in `_supported_generate`
return self._supported_generate(tokens, top_k, top_p, temp, repeat_penalty, reset,
frequency_penalty, presence_penalty, tfs_z, mirostat_mode,
mirostat_tau, mirostat_eta)
def _supported_generate(self, tokens: Sequence[int], top_k: int = 0, top_p: float = 0.7,
temp: float = 0.95, *args):
# Check unsupporeted parameters
unsupported_arg = ['repeat_penalty', 'reset', 'frequency_penalty', 'presence_penalty',
'tfs_z', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta']
defult_value = {'repeat_penalty': 1.1, 'reset': True, 'frequency_penalty': 0.0,
'presence_penalty': 0.0, 'tfs_z': 1.0, 'mirostat_mode': 0,
'mirostat_tau': 5.0, 'mirostat_eta': 0.1}
for index in range(len(args)):
if args[index] != defult_value[unsupported_arg[index]]:
warnings.warn(f"The parameter {unsupported_arg[index]} is temporarily "
"unsupported, please use the default value.")
invalidInputError(self.ctx is not None, "The attribute `ctx` of `ChatGLM` object is None.")
while True:
token = self.forward(input_ids=tokens,
top_k=top_k,
top_p=top_p,
temperature=temp)
tokens_or_none = yield token
tokens.append(token)
if tokens_or_none is not None:
tokens.extend(tokens_or_none)

View file

@ -1,72 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
from typing import List
from pathlib import Path
from ipex_llm.libs.chatglm_C import Pipeline, GenerationConfig
class ChatGLMContext:
def __init__(self, pipeline: Pipeline, config: GenerationConfig):
self.pipeline = pipeline
self.config = config
def chatglm_load(path: str,
n_ctx: int,
n_threads: int,
use_mmap: bool = False,
) -> ChatGLMContext:
path = str(Path(path))
pipeline = Pipeline(path, use_mmap)
config = GenerationConfig(
max_length=n_ctx,
num_threads=n_threads,
)
return ChatGLMContext(pipeline, config)
def chatglm_tokenize(ctx: ChatGLMContext, prompt: str) -> List[int]:
return ctx.pipeline.tokenizer.encode(prompt)
def chatglm_detokenize(ctx: ChatGLMContext, input_ids: List[int]) -> str:
return ctx.pipeline.tokenizer.decode(input_ids)
def chatglm_forward(ctx: ChatGLMContext,
input_ids: List[int],
do_sample: bool = True,
top_k: int = 0,
top_p: float = 0.7,
temperature: float = 0.95,
) -> int:
ctx.config.do_sample = do_sample
ctx.config.top_k = top_k
ctx.config.top_p = top_p
ctx.config.temperature = temperature
return ctx.pipeline.forward(input_ids, ctx.config)
def chatglm_eos_token(ctx: ChatGLMContext):
return ctx.pipeline.model.config.eos_token_id

View file

@ -32,7 +32,6 @@ __all__ = [
"LlamaLLM", "LlamaLLM",
"BloomLLM", "BloomLLM",
"GptneoxLLM", "GptneoxLLM",
"ChatGLMLLM",
"StarcoderLLM", "StarcoderLLM",
"TransformersLLM", "TransformersLLM",
"TransformersPipelineLLM" "TransformersPipelineLLM"
@ -43,7 +42,6 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
"LlamaLLM": LlamaLLM, "LlamaLLM": LlamaLLM,
"BloomLLM": BloomLLM, "BloomLLM": BloomLLM,
"GptneoxLLM": GptneoxLLM, "GptneoxLLM": GptneoxLLM,
"ChatGLMLLM": ChatGLMLLM,
"StarcoderLLM": StarcoderLLM, "StarcoderLLM": StarcoderLLM,
"TransformersPipelineLLM": TransformersPipelineLLM, "TransformersPipelineLLM": TransformersPipelineLLM,
"TransformersLLM": TransformersLLM "TransformersLLM": TransformersLLM

View file

@ -70,14 +70,13 @@ class BigdlNativeLLM(LLM):
"please switch to the new LLM API for sepcific models.") "please switch to the new LLM API for sepcific models.")
model_family: str = "llama" model_family: str = "llama"
"""The model family: currently supports llama, gptneox, bloom, starcoder and chatglm.""" """The model family: currently supports llama, gptneox, bloom, starcoder."""
family_info = { family_info = {
'llama': {'module': "ipex_llm.models" , 'class': "Llama"}, 'llama': {'module': "ipex_llm.models" , 'class': "Llama"},
'bloom': {'module': "ipex_llm.models", 'class': "Bloom"}, 'bloom': {'module': "ipex_llm.models", 'class': "Bloom"},
'gptneox': {'module': "ipex_llm.models", 'class': "Gptneox"}, 'gptneox': {'module': "ipex_llm.models", 'class': "Gptneox"},
'starcoder': {'module':"ipex_llm.models", 'class': "Starcoder"}, 'starcoder': {'module':"ipex_llm.models", 'class': "Starcoder"},
'chatglm': {'module':"ipex_llm.ggml.model.chatglm", 'class': "ChatGLM"},
} #: :meta private: } #: :meta private:
"""Info necessary for different model families initiation and configure.""" """Info necessary for different model families initiation and configure."""
@ -688,11 +687,6 @@ class GptneoxLLM(_BaseCausalLM):
ggml_module = "ipex_llm.models" ggml_module = "ipex_llm.models"
class ChatGLMLLM(_BaseCausalLM):
ggml_model = "ChatGLM"
ggml_module = "ipex_llm.ggml.model.chatglm"
class StarcoderLLM(_BaseCausalLM): class StarcoderLLM(_BaseCausalLM):
ggml_model = "Starcoder" ggml_model = "Starcoder"
ggml_module = "ipex_llm.models" ggml_module = "ipex_llm.models"

View file

@ -23,5 +23,3 @@ from ipex_llm.ggml.model.llama import Llama
from ipex_llm.ggml.model.gptneox import Gptneox from ipex_llm.ggml.model.gptneox import Gptneox
from ipex_llm.ggml.model.bloom import Bloom from ipex_llm.ggml.model.bloom import Bloom
from ipex_llm.ggml.model.starcoder import Starcoder from ipex_llm.ggml.model.starcoder import Starcoder
# temporarily disable until linux binary file for chatglm ready
# from ipex_llm.ggml.model.chatglm import ChatGLM

View file

@ -42,8 +42,7 @@ class BigdlNativeForCausalLM:
:param pretrained_model_name_or_path: Path for converted BigDL-LLM optimized ggml :param pretrained_model_name_or_path: Path for converted BigDL-LLM optimized ggml
binary checkpoint. The checkpoint should be converted by ``ipex_llm.llm_convert``. binary checkpoint. The checkpoint should be converted by ``ipex_llm.llm_convert``.
:param model_family: The model family of the pretrained checkpoint. :param model_family: The model family of the pretrained checkpoint.
Currently we support ``"llama"``, ``"bloom"``, ``"gptneox"``, ``"starcoder"`` Currently we support ``"llama"``, ``"bloom"``, ``"gptneox"``, ``"starcoder"``.
and ``"chatglm"``.
:param dtype: Which quantized precision will be converted. :param dtype: Which quantized precision will be converted.
Now only `int4` and `int8` are supported, and `int8` only works for `llama` Now only `int4` and `int8` are supported, and `int8` only works for `llama`
, `gptneox` and `starcoder`. , `gptneox` and `starcoder`.
@ -58,9 +57,9 @@ class BigdlNativeForCausalLM:
""" """
logging.warning("BigdlNativeForCausalLM has been deprecated, " logging.warning("BigdlNativeForCausalLM has been deprecated, "
"please switch to the new CausalLM API for sepcific models.") "please switch to the new CausalLM API for sepcific models.")
invalidInputError(model_family in ['llama', 'gptneox', 'bloom', 'starcoder', 'chatglm'], invalidInputError(model_family in ['llama', 'gptneox', 'bloom', 'starcoder'],
"Now we only support model family: 'llama', 'gptneox', 'bloom'," "Now we only support model family: 'llama', 'gptneox', 'bloom',"
" 'starcoder', 'chatglm', '{}' is not in the list.".format(model_family)) " 'starcoder', '{}' is not in the list.".format(model_family))
invalidInputError(dtype.lower() in ['int4', 'int8'], invalidInputError(dtype.lower() in ['int4', 'int8'],
"Now we only support int4 and int8 as date type for weight") "Now we only support int4 and int8 as date type for weight")
@ -78,9 +77,6 @@ class BigdlNativeForCausalLM:
elif model_family == 'starcoder': elif model_family == 'starcoder':
from ipex_llm.ggml.model.starcoder import Starcoder from ipex_llm.ggml.model.starcoder import Starcoder
return Starcoder(model_path=ggml_model_path, **kwargs) return Starcoder(model_path=ggml_model_path, **kwargs)
elif model_family == 'chatglm':
from ipex_llm.ggml.model.chatglm import ChatGLM
return ChatGLM(model_path=ggml_model_path, **kwargs)
class _BaseGGMLClass: class _BaseGGMLClass:
@ -110,9 +106,9 @@ class _BaseGGMLClass:
:return: a model instance :return: a model instance
""" """
try: try:
module = importlib.import_module(cls.GGML_Module)
class_ = getattr(module, cls.GGML_Model)
if native: if native:
module = importlib.import_module(cls.GGML_Module)
class_ = getattr(module, cls.GGML_Model)
invalidInputError(dtype.lower() in ['int4', 'int8'], invalidInputError(dtype.lower() in ['int4', 'int8'],
"Now we only support int4 and int8 as date type for weight") "Now we only support int4 and int8 as date type for weight")
ggml_model_path = pretrained_model_name_or_path ggml_model_path = pretrained_model_name_or_path