[LLM] Add performance tests for windows iGPU (#9584)
* Add support for win gpu benchmark with peak gpu memory monitoring * Add win igpu tests * Small fix * Forward outputs * Small fix * Test and small fixes * Small fix * Small fix and test * Small fixes * Add tests for 512-64 and change back to nightly tests * Small fix
This commit is contained in:
parent
29d5bb8df4
commit
3f4ad97929
5 changed files with 293 additions and 5 deletions
126
.github/workflows/llm_performance_tests.yml
vendored
126
.github/workflows/llm_performance_tests.yml
vendored
|
|
@ -206,3 +206,129 @@ jobs:
|
|||
if [ ${{ github.event.schedule}} ]; then
|
||||
curl -T ./*.csv ${LLM_FTP_URL}/llm/nightly_perf/core_${{ matrix.platform }}/
|
||||
fi
|
||||
|
||||
llm-performance-test-on-igpu:
|
||||
if: ${{ github.event.schedule || github.event.inputs.artifact == 'llm-performance-test-on-igpu' || github.event.inputs.artifact == 'all' }}
|
||||
needs: llm-cpp-build
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- os: windows
|
||||
python-version: "3.9"
|
||||
runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-igpu]
|
||||
env:
|
||||
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
# TODO: Put the bigdl-llm related install process for win gpu into a action function
|
||||
- name: Download llm binary
|
||||
uses: ./.github/actions/llm/download-llm-binary
|
||||
|
||||
- name: Prepare for install bigdl-llm from source
|
||||
shell: bash
|
||||
run: |
|
||||
sed -i 's/"bigdl-core-xe==" + VERSION + "/"bigdl-core-xe/g' python/llm/setup.py
|
||||
|
||||
- name: Install bigdl-llm and other related packages
|
||||
shell: cmd
|
||||
run: |
|
||||
call conda create -n igpu-perf python=${{ matrix.python-version }} libuv -y
|
||||
call conda activate igpu-perf
|
||||
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade wheel
|
||||
pip install --upgrade omegaconf pandas
|
||||
pip install --upgrade tiktoken einops transformers_stream_generator
|
||||
|
||||
cd python\llm
|
||||
python setup.py clean --all bdist_wheel --win
|
||||
if not exist dist\bigdl_llm*.whl (exit /b 1)
|
||||
for %%i in (dist\bigdl_llm*.whl) do set whl_name=%%i
|
||||
|
||||
pip install %whl_name%[xpu] -i %INTERNAL_PYPI_URL% --trusted-host %INTERNAL_PYPI_TRUSTED_HOST% -q
|
||||
if %ERRORLEVEL% neq 0 (exit /b 1)
|
||||
|
||||
call conda deactivate
|
||||
|
||||
- name: Set directory envs
|
||||
shell: bash
|
||||
run: |
|
||||
if [ ${{ github.event_name }} == 'schedule' ]; then
|
||||
echo "CSV_SAVE_PATH=${CSV_NIGHTLY_PATH}" >> "$GITHUB_ENV"
|
||||
else
|
||||
echo "CSV_SAVE_PATH=${CSV_PR_PATH}" >> "$GITHUB_ENV"
|
||||
fi
|
||||
cur_date=$(date +%Y-%m-%d)
|
||||
echo "LOG_FILE=${cur_date}_output.txt" >> "$GITHUB_ENV"
|
||||
|
||||
- name: Prepare igpu perf test
|
||||
shell: bash
|
||||
run: |
|
||||
# hide time info
|
||||
sed -i 's/str(end - st)/"xxxxxx"/g' python/llm/dev/benchmark/all-in-one/run.py
|
||||
sed -i 's/{today}/{today}_test1/g' python/llm/dev/benchmark/all-in-one/run.py
|
||||
sed -i "s/path to your local model hub/$MODEL_HUB_DIR/g" python/llm/test/benchmark/igpu-perf-test.yaml
|
||||
|
||||
- name: Test on igpu
|
||||
shell: cmd
|
||||
run: |
|
||||
call conda activate igpu-perf
|
||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
|
||||
set SYCL_ENABLE_DEFAULT_CONTEXTS=1
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
REM for llava
|
||||
set TRANSFORMERS_OFFLINE=1
|
||||
|
||||
move python\llm\test\benchmark\igpu-perf-test.yaml python\llm\dev\benchmark\all-in-one\config.yaml
|
||||
cd python\llm\dev\benchmark\all-in-one
|
||||
python run.py >> %LOG_FILE% 2>&1
|
||||
if %ERRORLEVEL% neq 0 (exit /b 1)
|
||||
|
||||
call conda deactivate
|
||||
|
||||
- name: Prepare igpu perf test for Mistral
|
||||
shell: bash
|
||||
run: |
|
||||
sed -i 's/test1/test2/g' python/llm/dev/benchmark/all-in-one/run.py
|
||||
sed -i "s/path to your local model hub/$MODEL_HUB_DIR/g" python/llm/test/benchmark/igpu-perf-test-434.yaml
|
||||
|
||||
- name: Test on igpu for Mistral
|
||||
shell: cmd
|
||||
run: |
|
||||
call conda activate igpu-perf
|
||||
pip install transformers==4.34.0
|
||||
|
||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
|
||||
set SYCL_ENABLE_DEFAULT_CONTEXTS=1
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
|
||||
move python\llm\test\benchmark\igpu-perf-test-434.yaml python\llm\dev\benchmark\all-in-one\config.yaml
|
||||
cd python\llm\dev\benchmark\all-in-one
|
||||
python run.py >> %LOG_FILE% 2>&1
|
||||
if %ERRORLEVEL% neq 0 (exit /b 1)
|
||||
|
||||
call conda deactivate
|
||||
|
||||
- name: Concat csv and generate html
|
||||
shell: cmd
|
||||
run: |
|
||||
call conda activate igpu-perf
|
||||
|
||||
cd python\llm\dev\benchmark\all-in-one
|
||||
move %LOG_FILE% %CSV_SAVE_PATH%\log\
|
||||
python ..\..\..\test\benchmark\concat_csv.py
|
||||
copy *.csv %CSV_SAVE_PATH%
|
||||
del /q *.csv
|
||||
cd ..\..\..\test\benchmark
|
||||
python csv_to_html.py -f %CSV_SAVE_PATH%
|
||||
if %ERRORLEVEL% neq 0 (exit /b 1)
|
||||
|
||||
call conda deactivate
|
||||
|
||||
- name: Remove conda env
|
||||
if: ${{ always() }}
|
||||
shell: cmd
|
||||
run: |
|
||||
call conda env remove -n igpu-perf -y
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@ repo_id:
|
|||
- 'THUDM/chatglm-6b'
|
||||
- 'THUDM/chatglm2-6b'
|
||||
- 'meta-llama/Llama-2-7b-chat-hf'
|
||||
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
|
||||
local_model_hub: 'path to your local model hub'
|
||||
warm_up: 1
|
||||
num_trials: 3
|
||||
|
|
@ -19,4 +20,5 @@ test_api:
|
|||
# - "transformer_int4_gpu" # on Intel GPU
|
||||
# - "optimize_model_gpu" # on Intel GPU
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
|
||||
|
||||
# - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
|
||||
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
|
||||
|
|
|
|||
|
|
@ -18,6 +18,7 @@
|
|||
# this code is copied from llama2 example test, and added performance test
|
||||
import torch
|
||||
import time
|
||||
import gc
|
||||
|
||||
import numpy as np
|
||||
from datetime import date
|
||||
|
|
@ -37,10 +38,12 @@ LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
|
|||
|
||||
CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b']
|
||||
|
||||
LLAVA_IDS = ['liuhaotian/llava-v1.5-7b']
|
||||
|
||||
results = []
|
||||
|
||||
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4'):
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False):
|
||||
# TODO: make a parameter
|
||||
result= {}
|
||||
if test_api == 'transformer_int4':
|
||||
|
|
@ -59,6 +62,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
|
||||
elif test_api == 'deepspeed_transformer_int4_cpu':
|
||||
result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
|
||||
elif test_api == 'transformer_int4_gpu_win':
|
||||
result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding)
|
||||
|
||||
for in_out_pair in in_out_pairs:
|
||||
if result and result[in_out_pair]:
|
||||
|
|
@ -70,7 +75,9 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
|
||||
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
|
||||
num_beams,
|
||||
low_bit])
|
||||
low_bit,
|
||||
cpu_embedding if 'win' in test_api else 'N/A',
|
||||
result[in_out_pair][-1][5] if 'win' in test_api else 'N/A']) # currently only peak mem for win gpu is caught here
|
||||
|
||||
|
||||
def get_model_path(repo_id, local_model_hub):
|
||||
|
|
@ -637,6 +644,102 @@ def run_deepspeed_transformer_int4_cpu(repo_id,
|
|||
actual_in_len, actual_out_len])
|
||||
return result
|
||||
|
||||
|
||||
def run_transformer_int4_gpu_win(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials,
|
||||
num_beams,
|
||||
low_bit,
|
||||
cpu_embedding):
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
reserved_mem_list = []
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = model.to('xpu')
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
use_cache=True, cpu_embedding=cpu_embedding)
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = model.to('xpu')
|
||||
elif repo_id in LLAVA_IDS:
|
||||
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
|
||||
sys.path.append(rf"{llava_repo_dir}")
|
||||
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = model.to('xpu')
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = model.to('xpu')
|
||||
if isinstance(model, GPTJForCausalLM):
|
||||
# For gpt-j model family, this optimization can provide a better performance.
|
||||
model = ipex.optimize(model.eval(), inplace=True)
|
||||
end = time.perf_counter()
|
||||
print(">> loading of model costs {}s".format(end - st))
|
||||
reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
|
||||
result = {}
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
try:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
# As different tokenizer has different encodings,
|
||||
# in_len.txt maybe shorter than we need,
|
||||
# use much longer context to make sure input length
|
||||
test_length = min(in_len*2, 8192)
|
||||
while test_length not in [32, 256, 1024, 2048, 8192]:
|
||||
test_length = test_length * 2
|
||||
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
|
||||
gpu_peak_mem = max(reserved_mem_list) # always keep the peak gpu mem at current stage
|
||||
output_ids = output_ids.cpu()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
print(output[0])
|
||||
actual_out_len = output_ids.shape[1] - actual_in_len
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
||||
actual_in_len, actual_out_len, gpu_peak_mem])
|
||||
except RuntimeError:
|
||||
pass
|
||||
model.to('cpu')
|
||||
torch.xpu.synchronize()
|
||||
torch.xpu.empty_cache()
|
||||
del model
|
||||
gc.collect()
|
||||
return result
|
||||
|
||||
if __name__ == '__main__':
|
||||
from omegaconf import OmegaConf
|
||||
conf = OmegaConf.load(f'{current_dir}/config.yaml')
|
||||
|
|
@ -645,9 +748,11 @@ if __name__ == '__main__':
|
|||
import pandas as pd
|
||||
for api in conf.test_api:
|
||||
for model in conf.repo_id:
|
||||
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'], conf['low_bit'])
|
||||
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
|
||||
conf['low_bit'], conf['cpu_embedding'])
|
||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
||||
'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit'])
|
||||
'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
||||
'peak mem (GB)'])
|
||||
|
||||
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
|
||||
results = []
|
||||
|
|
|
|||
22
python/llm/test/benchmark/igpu-perf-test-434.yaml
Normal file
22
python/llm/test/benchmark/igpu-perf-test-434.yaml
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
repo_id:
|
||||
- 'mistralai/Mistral-7B-Instruct-v0.1'
|
||||
local_model_hub: 'path to your local model hub'
|
||||
warm_up: 3
|
||||
num_trials: 5
|
||||
num_beams: 1 # default to greedy search
|
||||
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
|
||||
in_out_pairs:
|
||||
- '32-32'
|
||||
- '512-64'
|
||||
# - '1024-128'
|
||||
test_api:
|
||||
# - "transformer_int4"
|
||||
# - "native_int4"
|
||||
# - "optimize_model"
|
||||
# - "pytorch_autocast_bf16"
|
||||
# - "ipex_fp16_gpu" # on Intel GPU
|
||||
# - "transformer_int4_gpu" # on Intel GPU
|
||||
# - "optimize_model_gpu" # on Intel GPU
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
|
||||
- "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
|
||||
cpu_embedding: True # whether put embedding to CPU (only avaiable now for gpu win related test_api)
|
||||
33
python/llm/test/benchmark/igpu-perf-test.yaml
Normal file
33
python/llm/test/benchmark/igpu-perf-test.yaml
Normal file
|
|
@ -0,0 +1,33 @@
|
|||
repo_id:
|
||||
- 'THUDM/chatglm2-6b'
|
||||
- 'THUDM/chatglm3-6b'
|
||||
- 'baichuan-inc/Baichuan2-7B-Chat'
|
||||
- 'internlm/internlm-chat-7b-8k'
|
||||
- 'Qwen/Qwen-7B-Chat-10-12'
|
||||
- 'BAAI/AquilaChat2-7B'
|
||||
- '01-ai/Yi-6B'
|
||||
- 'meta-llama/Llama-2-7b-chat-hf'
|
||||
- 'WisdomShell/CodeShell-7B-Chat'
|
||||
- 'tiiuae/falcon-7b-instruct-with-patch'
|
||||
- 'mosaicml/mpt-7b-chat'
|
||||
- 'liuhaotian/llava-v1.5-7b'
|
||||
local_model_hub: 'path to your local model hub'
|
||||
warm_up: 3
|
||||
num_trials: 5
|
||||
num_beams: 1 # default to greedy search
|
||||
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
|
||||
in_out_pairs:
|
||||
- '32-32'
|
||||
- '512-64'
|
||||
# - '1024-128'
|
||||
test_api:
|
||||
# - "transformer_int4"
|
||||
# - "native_int4"
|
||||
# - "optimize_model"
|
||||
# - "pytorch_autocast_bf16"
|
||||
# - "ipex_fp16_gpu" # on Intel GPU
|
||||
# - "transformer_int4_gpu" # on Intel GPU
|
||||
# - "optimize_model_gpu" # on Intel GPU
|
||||
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
|
||||
- "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
|
||||
cpu_embedding: True # whether put embedding to CPU (only avaiable now for gpu win related test_api)
|
||||
Loading…
Reference in a new issue