[LLM] Add performance tests for windows iGPU (#9584)

* Add support for win gpu benchmark with peak gpu memory monitoring

* Add win igpu tests

* Small fix

* Forward outputs

* Small fix

* Test and small fixes

* Small fix

* Small fix and test

* Small fixes

* Add tests for 512-64 and change back to nightly tests

* Small fix
This commit is contained in:
Yuwen Hu 2023-12-04 20:50:02 +08:00 committed by GitHub
parent 29d5bb8df4
commit 3f4ad97929
5 changed files with 293 additions and 5 deletions

View file

@ -206,3 +206,129 @@ jobs:
if [ ${{ github.event.schedule}} ]; then
curl -T ./*.csv ${LLM_FTP_URL}/llm/nightly_perf/core_${{ matrix.platform }}/
fi
llm-performance-test-on-igpu:
if: ${{ github.event.schedule || github.event.inputs.artifact == 'llm-performance-test-on-igpu' || github.event.inputs.artifact == 'all' }}
needs: llm-cpp-build
strategy:
fail-fast: false
matrix:
include:
- os: windows
python-version: "3.9"
runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-igpu]
env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
steps:
- uses: actions/checkout@v3
# TODO: Put the bigdl-llm related install process for win gpu into a action function
- name: Download llm binary
uses: ./.github/actions/llm/download-llm-binary
- name: Prepare for install bigdl-llm from source
shell: bash
run: |
sed -i 's/"bigdl-core-xe==" + VERSION + "/"bigdl-core-xe/g' python/llm/setup.py
- name: Install bigdl-llm and other related packages
shell: cmd
run: |
call conda create -n igpu-perf python=${{ matrix.python-version }} libuv -y
call conda activate igpu-perf
pip install --upgrade pip
pip install --upgrade wheel
pip install --upgrade omegaconf pandas
pip install --upgrade tiktoken einops transformers_stream_generator
cd python\llm
python setup.py clean --all bdist_wheel --win
if not exist dist\bigdl_llm*.whl (exit /b 1)
for %%i in (dist\bigdl_llm*.whl) do set whl_name=%%i
pip install %whl_name%[xpu] -i %INTERNAL_PYPI_URL% --trusted-host %INTERNAL_PYPI_TRUSTED_HOST% -q
if %ERRORLEVEL% neq 0 (exit /b 1)
call conda deactivate
- name: Set directory envs
shell: bash
run: |
if [ ${{ github.event_name }} == 'schedule' ]; then
echo "CSV_SAVE_PATH=${CSV_NIGHTLY_PATH}" >> "$GITHUB_ENV"
else
echo "CSV_SAVE_PATH=${CSV_PR_PATH}" >> "$GITHUB_ENV"
fi
cur_date=$(date +%Y-%m-%d)
echo "LOG_FILE=${cur_date}_output.txt" >> "$GITHUB_ENV"
- name: Prepare igpu perf test
shell: bash
run: |
# hide time info
sed -i 's/str(end - st)/"xxxxxx"/g' python/llm/dev/benchmark/all-in-one/run.py
sed -i 's/{today}/{today}_test1/g' python/llm/dev/benchmark/all-in-one/run.py
sed -i "s/path to your local model hub/$MODEL_HUB_DIR/g" python/llm/test/benchmark/igpu-perf-test.yaml
- name: Test on igpu
shell: cmd
run: |
call conda activate igpu-perf
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
set SYCL_ENABLE_DEFAULT_CONTEXTS=1
set SYCL_CACHE_PERSISTENT=1
REM for llava
set TRANSFORMERS_OFFLINE=1
move python\llm\test\benchmark\igpu-perf-test.yaml python\llm\dev\benchmark\all-in-one\config.yaml
cd python\llm\dev\benchmark\all-in-one
python run.py >> %LOG_FILE% 2>&1
if %ERRORLEVEL% neq 0 (exit /b 1)
call conda deactivate
- name: Prepare igpu perf test for Mistral
shell: bash
run: |
sed -i 's/test1/test2/g' python/llm/dev/benchmark/all-in-one/run.py
sed -i "s/path to your local model hub/$MODEL_HUB_DIR/g" python/llm/test/benchmark/igpu-perf-test-434.yaml
- name: Test on igpu for Mistral
shell: cmd
run: |
call conda activate igpu-perf
pip install transformers==4.34.0
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
set SYCL_ENABLE_DEFAULT_CONTEXTS=1
set SYCL_CACHE_PERSISTENT=1
move python\llm\test\benchmark\igpu-perf-test-434.yaml python\llm\dev\benchmark\all-in-one\config.yaml
cd python\llm\dev\benchmark\all-in-one
python run.py >> %LOG_FILE% 2>&1
if %ERRORLEVEL% neq 0 (exit /b 1)
call conda deactivate
- name: Concat csv and generate html
shell: cmd
run: |
call conda activate igpu-perf
cd python\llm\dev\benchmark\all-in-one
move %LOG_FILE% %CSV_SAVE_PATH%\log\
python ..\..\..\test\benchmark\concat_csv.py
copy *.csv %CSV_SAVE_PATH%
del /q *.csv
cd ..\..\..\test\benchmark
python csv_to_html.py -f %CSV_SAVE_PATH%
if %ERRORLEVEL% neq 0 (exit /b 1)
call conda deactivate
- name: Remove conda env
if: ${{ always() }}
shell: cmd
run: |
call conda env remove -n igpu-perf -y

View file

@ -2,6 +2,7 @@ repo_id:
- 'THUDM/chatglm-6b'
- 'THUDM/chatglm2-6b'
- 'meta-llama/Llama-2-7b-chat-hf'
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
@ -19,4 +20,5 @@ test_api:
# - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
# - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)

View file

@ -18,6 +18,7 @@
# this code is copied from llama2 example test, and added performance test
import torch
import time
import gc
import numpy as np
from datetime import date
@ -37,10 +38,12 @@ LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b']
LLAVA_IDS = ['liuhaotian/llava-v1.5-7b']
results = []
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4'):
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False):
# TODO: make a parameter
result= {}
if test_api == 'transformer_int4':
@ -59,6 +62,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
elif test_api == 'deepspeed_transformer_int4_cpu':
result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
elif test_api == 'transformer_int4_gpu_win':
result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding)
for in_out_pair in in_out_pairs:
if result and result[in_out_pair]:
@ -70,7 +75,9 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
num_beams,
low_bit])
low_bit,
cpu_embedding if 'win' in test_api else 'N/A',
result[in_out_pair][-1][5] if 'win' in test_api else 'N/A']) # currently only peak mem for win gpu is caught here
def get_model_path(repo_id, local_model_hub):
@ -637,6 +644,102 @@ def run_deepspeed_transformer_int4_cpu(repo_id,
actual_in_len, actual_out_len])
return result
def run_transformer_int4_gpu_win(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials,
num_beams,
low_bit,
cpu_embedding):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
import intel_extension_for_pytorch as ipex
reserved_mem_list = []
model_path = get_model_path(repo_id, local_model_hub)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in CHATGLM_IDS:
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding)
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
elif repo_id in LLAVA_IDS:
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
sys.path.append(rf"{llava_repo_dir}")
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
else:
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
if isinstance(model, GPTJForCausalLM):
# For gpt-j model family, this optimization can provide a better performance.
model = ipex.optimize(model.eval(), inplace=True)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
model = BenchmarkWrapper(model)
result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
try:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
# As different tokenizer has different encodings,
# in_len.txt maybe shorter than we need,
# use much longer context to make sure input length
test_length = min(in_len*2, 8192)
while test_length not in [32, 256, 1024, 2048, 8192]:
test_length = test_length * 2
input_str = open(f"prompt/{test_length}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
torch.xpu.synchronize()
end = time.perf_counter()
reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
gpu_peak_mem = max(reserved_mem_list) # always keep the peak gpu mem at current stage
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
actual_in_len, actual_out_len, gpu_peak_mem])
except RuntimeError:
pass
model.to('cpu')
torch.xpu.synchronize()
torch.xpu.empty_cache()
del model
gc.collect()
return result
if __name__ == '__main__':
from omegaconf import OmegaConf
conf = OmegaConf.load(f'{current_dir}/config.yaml')
@ -645,9 +748,11 @@ if __name__ == '__main__':
import pandas as pd
for api in conf.test_api:
for model in conf.repo_id:
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'], conf['low_bit'])
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
conf['low_bit'], conf['cpu_embedding'])
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit'])
'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
'peak mem (GB)'])
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
results = []

View file

@ -0,0 +1,22 @@
repo_id:
- 'mistralai/Mistral-7B-Instruct-v0.1'
local_model_hub: 'path to your local model hub'
warm_up: 3
num_trials: 5
num_beams: 1 # default to greedy search
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
in_out_pairs:
- '32-32'
- '512-64'
# - '1024-128'
test_api:
# - "transformer_int4"
# - "native_int4"
# - "optimize_model"
# - "pytorch_autocast_bf16"
# - "ipex_fp16_gpu" # on Intel GPU
# - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
- "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
cpu_embedding: True # whether put embedding to CPU (only avaiable now for gpu win related test_api)

View file

@ -0,0 +1,33 @@
repo_id:
- 'THUDM/chatglm2-6b'
- 'THUDM/chatglm3-6b'
- 'baichuan-inc/Baichuan2-7B-Chat'
- 'internlm/internlm-chat-7b-8k'
- 'Qwen/Qwen-7B-Chat-10-12'
- 'BAAI/AquilaChat2-7B'
- '01-ai/Yi-6B'
- 'meta-llama/Llama-2-7b-chat-hf'
- 'WisdomShell/CodeShell-7B-Chat'
- 'tiiuae/falcon-7b-instruct-with-patch'
- 'mosaicml/mpt-7b-chat'
- 'liuhaotian/llava-v1.5-7b'
local_model_hub: 'path to your local model hub'
warm_up: 3
num_trials: 5
num_beams: 1 # default to greedy search
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
in_out_pairs:
- '32-32'
- '512-64'
# - '1024-128'
test_api:
# - "transformer_int4"
# - "native_int4"
# - "optimize_model"
# - "pytorch_autocast_bf16"
# - "ipex_fp16_gpu" # on Intel GPU
# - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
- "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
cpu_embedding: True # whether put embedding to CPU (only avaiable now for gpu win related test_api)