[LLM] Add performance tests for windows iGPU (#9584)
* Add support for win gpu benchmark with peak gpu memory monitoring * Add win igpu tests * Small fix * Forward outputs * Small fix * Test and small fixes * Small fix * Small fix and test * Small fixes * Add tests for 512-64 and change back to nightly tests * Small fix
This commit is contained in:
		
							parent
							
								
									29d5bb8df4
								
							
						
					
					
						commit
						3f4ad97929
					
				
					 5 changed files with 293 additions and 5 deletions
				
			
		
							
								
								
									
										126
									
								
								.github/workflows/llm_performance_tests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										126
									
								
								.github/workflows/llm_performance_tests.yml
									
									
									
									
										vendored
									
									
								
							| 
						 | 
					@ -206,3 +206,129 @@ jobs:
 | 
				
			||||||
          if [ ${{ github.event.schedule}} ]; then
 | 
					          if [ ${{ github.event.schedule}} ]; then
 | 
				
			||||||
            curl -T ./*.csv ${LLM_FTP_URL}/llm/nightly_perf/core_${{ matrix.platform }}/
 | 
					            curl -T ./*.csv ${LLM_FTP_URL}/llm/nightly_perf/core_${{ matrix.platform }}/
 | 
				
			||||||
          fi
 | 
					          fi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  llm-performance-test-on-igpu:
 | 
				
			||||||
 | 
					    if: ${{ github.event.schedule || github.event.inputs.artifact == 'llm-performance-test-on-igpu' || github.event.inputs.artifact == 'all' }}
 | 
				
			||||||
 | 
					    needs: llm-cpp-build
 | 
				
			||||||
 | 
					    strategy:
 | 
				
			||||||
 | 
					      fail-fast: false
 | 
				
			||||||
 | 
					      matrix:
 | 
				
			||||||
 | 
					        include:
 | 
				
			||||||
 | 
					          - os: windows
 | 
				
			||||||
 | 
					            python-version: "3.9"
 | 
				
			||||||
 | 
					    runs-on: [self-hosted, "${{ matrix.os }}", llm, perf-igpu]
 | 
				
			||||||
 | 
					    env:
 | 
				
			||||||
 | 
					      ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
 | 
				
			||||||
 | 
					    steps:
 | 
				
			||||||
 | 
					      - uses: actions/checkout@v3
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      # TODO: Put the bigdl-llm related install process for win gpu into a action function
 | 
				
			||||||
 | 
					      - name: Download llm binary
 | 
				
			||||||
 | 
					        uses: ./.github/actions/llm/download-llm-binary
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Prepare for install bigdl-llm from source
 | 
				
			||||||
 | 
					        shell: bash
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          sed -i 's/"bigdl-core-xe==" + VERSION + "/"bigdl-core-xe/g' python/llm/setup.py
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Install bigdl-llm and other related packages
 | 
				
			||||||
 | 
					        shell: cmd
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          call conda create -n igpu-perf python=${{ matrix.python-version }} libuv -y
 | 
				
			||||||
 | 
					          call conda activate igpu-perf
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          pip install --upgrade pip
 | 
				
			||||||
 | 
					          pip install --upgrade wheel
 | 
				
			||||||
 | 
					          pip install --upgrade omegaconf pandas
 | 
				
			||||||
 | 
					          pip install --upgrade tiktoken einops transformers_stream_generator
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          cd python\llm
 | 
				
			||||||
 | 
					          python setup.py clean --all bdist_wheel --win
 | 
				
			||||||
 | 
					          if not exist dist\bigdl_llm*.whl (exit /b 1)
 | 
				
			||||||
 | 
					          for %%i in (dist\bigdl_llm*.whl) do set whl_name=%%i
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          pip install %whl_name%[xpu] -i %INTERNAL_PYPI_URL% --trusted-host %INTERNAL_PYPI_TRUSTED_HOST% -q
 | 
				
			||||||
 | 
					          if %ERRORLEVEL% neq 0 (exit /b 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          call conda deactivate
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Set directory envs
 | 
				
			||||||
 | 
					        shell: bash
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          if [ ${{ github.event_name }} == 'schedule' ]; then
 | 
				
			||||||
 | 
					            echo "CSV_SAVE_PATH=${CSV_NIGHTLY_PATH}" >> "$GITHUB_ENV"
 | 
				
			||||||
 | 
					          else
 | 
				
			||||||
 | 
					            echo "CSV_SAVE_PATH=${CSV_PR_PATH}" >> "$GITHUB_ENV"
 | 
				
			||||||
 | 
					          fi
 | 
				
			||||||
 | 
					          cur_date=$(date +%Y-%m-%d)
 | 
				
			||||||
 | 
					          echo "LOG_FILE=${cur_date}_output.txt" >> "$GITHUB_ENV"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Prepare igpu perf test
 | 
				
			||||||
 | 
					        shell: bash
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          # hide time info
 | 
				
			||||||
 | 
					          sed -i 's/str(end - st)/"xxxxxx"/g' python/llm/dev/benchmark/all-in-one/run.py
 | 
				
			||||||
 | 
					          sed -i 's/{today}/{today}_test1/g' python/llm/dev/benchmark/all-in-one/run.py
 | 
				
			||||||
 | 
					          sed -i "s/path to your local model hub/$MODEL_HUB_DIR/g" python/llm/test/benchmark/igpu-perf-test.yaml
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Test on igpu
 | 
				
			||||||
 | 
					        shell: cmd
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          call conda activate igpu-perf
 | 
				
			||||||
 | 
					          call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
 | 
				
			||||||
 | 
					          set SYCL_ENABLE_DEFAULT_CONTEXTS=1
 | 
				
			||||||
 | 
					          set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					          REM for llava
 | 
				
			||||||
 | 
					          set TRANSFORMERS_OFFLINE=1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          move python\llm\test\benchmark\igpu-perf-test.yaml python\llm\dev\benchmark\all-in-one\config.yaml
 | 
				
			||||||
 | 
					          cd python\llm\dev\benchmark\all-in-one
 | 
				
			||||||
 | 
					          python run.py >> %LOG_FILE% 2>&1
 | 
				
			||||||
 | 
					          if %ERRORLEVEL% neq 0 (exit /b 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          call conda deactivate
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Prepare igpu perf test for Mistral
 | 
				
			||||||
 | 
					        shell: bash
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          sed -i 's/test1/test2/g' python/llm/dev/benchmark/all-in-one/run.py
 | 
				
			||||||
 | 
					          sed -i "s/path to your local model hub/$MODEL_HUB_DIR/g" python/llm/test/benchmark/igpu-perf-test-434.yaml
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Test on igpu for Mistral
 | 
				
			||||||
 | 
					        shell: cmd
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          call conda activate igpu-perf
 | 
				
			||||||
 | 
					          pip install transformers==4.34.0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
 | 
				
			||||||
 | 
					          set SYCL_ENABLE_DEFAULT_CONTEXTS=1
 | 
				
			||||||
 | 
					          set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          move python\llm\test\benchmark\igpu-perf-test-434.yaml python\llm\dev\benchmark\all-in-one\config.yaml
 | 
				
			||||||
 | 
					          cd python\llm\dev\benchmark\all-in-one
 | 
				
			||||||
 | 
					          python run.py >> %LOG_FILE% 2>&1
 | 
				
			||||||
 | 
					          if %ERRORLEVEL% neq 0 (exit /b 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          call conda deactivate
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Concat csv and generate html
 | 
				
			||||||
 | 
					        shell: cmd
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          call conda activate igpu-perf
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          cd python\llm\dev\benchmark\all-in-one
 | 
				
			||||||
 | 
					          move %LOG_FILE% %CSV_SAVE_PATH%\log\
 | 
				
			||||||
 | 
					          python ..\..\..\test\benchmark\concat_csv.py
 | 
				
			||||||
 | 
					          copy *.csv %CSV_SAVE_PATH%
 | 
				
			||||||
 | 
					          del /q *.csv
 | 
				
			||||||
 | 
					          cd ..\..\..\test\benchmark
 | 
				
			||||||
 | 
					          python csv_to_html.py -f %CSV_SAVE_PATH%
 | 
				
			||||||
 | 
					          if %ERRORLEVEL% neq 0 (exit /b 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					          call conda deactivate
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Remove conda env
 | 
				
			||||||
 | 
					        if: ${{ always() }}
 | 
				
			||||||
 | 
					        shell: cmd
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          call conda env remove -n igpu-perf -y
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -2,6 +2,7 @@ repo_id:
 | 
				
			||||||
  - 'THUDM/chatglm-6b'
 | 
					  - 'THUDM/chatglm-6b'
 | 
				
			||||||
  - 'THUDM/chatglm2-6b'
 | 
					  - 'THUDM/chatglm2-6b'
 | 
				
			||||||
  - 'meta-llama/Llama-2-7b-chat-hf'
 | 
					  - 'meta-llama/Llama-2-7b-chat-hf'
 | 
				
			||||||
 | 
					  # - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
 | 
				
			||||||
local_model_hub: 'path to your local model hub'
 | 
					local_model_hub: 'path to your local model hub'
 | 
				
			||||||
warm_up: 1
 | 
					warm_up: 1
 | 
				
			||||||
num_trials: 3
 | 
					num_trials: 3
 | 
				
			||||||
| 
						 | 
					@ -19,4 +20,5 @@ test_api:
 | 
				
			||||||
  # - "transformer_int4_gpu"  # on Intel GPU
 | 
					  # - "transformer_int4_gpu"  # on Intel GPU
 | 
				
			||||||
  # - "optimize_model_gpu"  # on Intel GPU
 | 
					  # - "optimize_model_gpu"  # on Intel GPU
 | 
				
			||||||
  # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
 | 
					  # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
 | 
				
			||||||
 | 
					  # - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
 | 
				
			||||||
 | 
					cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -18,6 +18,7 @@
 | 
				
			||||||
# this code is copied from llama2 example test, and added performance test
 | 
					# this code is copied from llama2 example test, and added performance test
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
 | 
					import gc
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
from datetime import date
 | 
					from datetime import date
 | 
				
			||||||
| 
						 | 
					@ -37,10 +38,12 @@ LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
 | 
				
			||||||
 | 
					
 | 
				
			||||||
CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b']
 | 
					CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					LLAVA_IDS = ['liuhaotian/llava-v1.5-7b']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
results = []
 | 
					results = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4'):
 | 
					def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False):
 | 
				
			||||||
    # TODO: make a parameter
 | 
					    # TODO: make a parameter
 | 
				
			||||||
    result= {}
 | 
					    result= {}
 | 
				
			||||||
    if test_api == 'transformer_int4':
 | 
					    if test_api == 'transformer_int4':
 | 
				
			||||||
| 
						 | 
					@ -59,6 +62,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
				
			||||||
        result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
 | 
					        result = run_ipex_fp16_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
 | 
				
			||||||
    elif test_api == 'deepspeed_transformer_int4_cpu':
 | 
					    elif test_api == 'deepspeed_transformer_int4_cpu':
 | 
				
			||||||
        result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
 | 
					        result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
 | 
				
			||||||
 | 
					    elif test_api == 'transformer_int4_gpu_win':
 | 
				
			||||||
 | 
					        result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for in_out_pair in in_out_pairs:
 | 
					    for in_out_pair in in_out_pairs:
 | 
				
			||||||
        if result and result[in_out_pair]:
 | 
					        if result and result[in_out_pair]:
 | 
				
			||||||
| 
						 | 
					@ -70,7 +75,9 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
				
			||||||
                            f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
 | 
					                            f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
 | 
				
			||||||
                            f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
 | 
					                            f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
 | 
				
			||||||
                            num_beams,
 | 
					                            num_beams,
 | 
				
			||||||
                            low_bit])
 | 
					                            low_bit,
 | 
				
			||||||
 | 
					                            cpu_embedding if 'win' in test_api else 'N/A',
 | 
				
			||||||
 | 
					                            result[in_out_pair][-1][5] if 'win' in test_api else 'N/A']) # currently only peak mem for win gpu is caught here
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def get_model_path(repo_id, local_model_hub):
 | 
					def get_model_path(repo_id, local_model_hub):
 | 
				
			||||||
| 
						 | 
					@ -637,6 +644,102 @@ def run_deepspeed_transformer_int4_cpu(repo_id,
 | 
				
			||||||
                                           actual_in_len, actual_out_len])
 | 
					                                           actual_in_len, actual_out_len])
 | 
				
			||||||
    return result
 | 
					    return result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_transformer_int4_gpu_win(repo_id,
 | 
				
			||||||
 | 
					                                 local_model_hub,
 | 
				
			||||||
 | 
					                                 in_out_pairs,
 | 
				
			||||||
 | 
					                                 warm_up,
 | 
				
			||||||
 | 
					                                 num_trials,
 | 
				
			||||||
 | 
					                                 num_beams,
 | 
				
			||||||
 | 
					                                 low_bit,
 | 
				
			||||||
 | 
					                                 cpu_embedding):
 | 
				
			||||||
 | 
					    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
				
			||||||
 | 
					    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
				
			||||||
 | 
					    import intel_extension_for_pytorch as ipex
 | 
				
			||||||
 | 
					    reserved_mem_list = []
 | 
				
			||||||
 | 
					    model_path = get_model_path(repo_id, local_model_hub)
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    st = time.perf_counter()
 | 
				
			||||||
 | 
					    if repo_id in CHATGLM_IDS:
 | 
				
			||||||
 | 
					        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
				
			||||||
 | 
					                                          trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
 | 
				
			||||||
 | 
					        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					        model = model.to('xpu')
 | 
				
			||||||
 | 
					    elif repo_id in LLAMA_IDS:
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
				
			||||||
 | 
					                                                     use_cache=True, cpu_embedding=cpu_embedding)
 | 
				
			||||||
 | 
					        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					        model = model.to('xpu')
 | 
				
			||||||
 | 
					    elif repo_id in LLAVA_IDS:
 | 
				
			||||||
 | 
					        llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
 | 
				
			||||||
 | 
					        sys.path.append(rf"{llava_repo_dir}")
 | 
				
			||||||
 | 
					        from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
				
			||||||
 | 
					                                          trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
 | 
				
			||||||
 | 
					        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					        model = model.to('xpu')
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
				
			||||||
 | 
					                                                     trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding)
 | 
				
			||||||
 | 
					        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					        model = model.to('xpu')
 | 
				
			||||||
 | 
					        if isinstance(model, GPTJForCausalLM):
 | 
				
			||||||
 | 
					            # For gpt-j model family, this optimization can provide a better performance.
 | 
				
			||||||
 | 
					            model = ipex.optimize(model.eval(), inplace=True)
 | 
				
			||||||
 | 
					    end = time.perf_counter()
 | 
				
			||||||
 | 
					    print(">> loading of model costs {}s".format(end - st))
 | 
				
			||||||
 | 
					    reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model = BenchmarkWrapper(model)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    result = {}
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        for in_out in in_out_pairs:
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                in_out_len = in_out.split("-")
 | 
				
			||||||
 | 
					                in_len = int(in_out_len[0])
 | 
				
			||||||
 | 
					                out_len = int(in_out_len[1])
 | 
				
			||||||
 | 
					                # As different tokenizer has different encodings,
 | 
				
			||||||
 | 
					                # in_len.txt maybe shorter than we need,
 | 
				
			||||||
 | 
					                # use much longer context to make sure input length
 | 
				
			||||||
 | 
					                test_length = min(in_len*2, 8192)
 | 
				
			||||||
 | 
					                while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
				
			||||||
 | 
					                    test_length = test_length * 2
 | 
				
			||||||
 | 
					                input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
				
			||||||
 | 
					                # As different tokenizer has different encodings,
 | 
				
			||||||
 | 
					                # slice the input_ids to ensure the prompt length is required length.
 | 
				
			||||||
 | 
					                input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
				
			||||||
 | 
					                input_ids = input_ids[:, :in_len]
 | 
				
			||||||
 | 
					                true_str = tokenizer.batch_decode(input_ids)[0]
 | 
				
			||||||
 | 
					                input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					                actual_in_len = input_ids.shape[1]
 | 
				
			||||||
 | 
					                result[in_out] = []
 | 
				
			||||||
 | 
					                for i in range(num_trials + warm_up):
 | 
				
			||||||
 | 
					                    st = time.perf_counter()
 | 
				
			||||||
 | 
					                    output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
				
			||||||
 | 
					                                                num_beams=num_beams)
 | 
				
			||||||
 | 
					                    torch.xpu.synchronize()
 | 
				
			||||||
 | 
					                    end = time.perf_counter()
 | 
				
			||||||
 | 
					                    reserved_mem_list.append(torch.xpu.memory.memory_reserved()/(1024**3))
 | 
				
			||||||
 | 
					                    gpu_peak_mem = max(reserved_mem_list) # always keep the peak gpu mem at current stage
 | 
				
			||||||
 | 
					                    output_ids = output_ids.cpu()
 | 
				
			||||||
 | 
					                    print("model generate cost: " + str(end - st))
 | 
				
			||||||
 | 
					                    output = tokenizer.batch_decode(output_ids)
 | 
				
			||||||
 | 
					                    print(output[0])
 | 
				
			||||||
 | 
					                    actual_out_len = output_ids.shape[1] - actual_in_len
 | 
				
			||||||
 | 
					                    if i >= warm_up:
 | 
				
			||||||
 | 
					                        result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
				
			||||||
 | 
					                                            actual_in_len, actual_out_len, gpu_peak_mem])
 | 
				
			||||||
 | 
					            except RuntimeError:
 | 
				
			||||||
 | 
					                pass
 | 
				
			||||||
 | 
					    model.to('cpu')
 | 
				
			||||||
 | 
					    torch.xpu.synchronize()
 | 
				
			||||||
 | 
					    torch.xpu.empty_cache()
 | 
				
			||||||
 | 
					    del model
 | 
				
			||||||
 | 
					    gc.collect()
 | 
				
			||||||
 | 
					    return result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    from omegaconf import OmegaConf
 | 
					    from omegaconf import OmegaConf
 | 
				
			||||||
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
					    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
				
			||||||
| 
						 | 
					@ -645,9 +748,11 @@ if __name__ == '__main__':
 | 
				
			||||||
    import pandas as pd
 | 
					    import pandas as pd
 | 
				
			||||||
    for api in conf.test_api:
 | 
					    for api in conf.test_api:
 | 
				
			||||||
        for model in conf.repo_id:
 | 
					        for model in conf.repo_id:
 | 
				
			||||||
            run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'], conf['low_bit'])
 | 
					            run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
 | 
				
			||||||
 | 
					                      conf['low_bit'], conf['cpu_embedding'])
 | 
				
			||||||
        df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
 | 
					        df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
 | 
				
			||||||
                                            'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit'])
 | 
					                                            'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding', 
 | 
				
			||||||
 | 
					                                            'peak mem (GB)'])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
 | 
					        df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
 | 
				
			||||||
        results = []
 | 
					        results = []
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										22
									
								
								python/llm/test/benchmark/igpu-perf-test-434.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								python/llm/test/benchmark/igpu-perf-test-434.yaml
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,22 @@
 | 
				
			||||||
 | 
					repo_id:
 | 
				
			||||||
 | 
					  - 'mistralai/Mistral-7B-Instruct-v0.1'
 | 
				
			||||||
 | 
					local_model_hub: 'path to your local model hub'
 | 
				
			||||||
 | 
					warm_up: 3
 | 
				
			||||||
 | 
					num_trials: 5
 | 
				
			||||||
 | 
					num_beams: 1 # default to greedy search
 | 
				
			||||||
 | 
					low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
 | 
				
			||||||
 | 
					in_out_pairs:
 | 
				
			||||||
 | 
					  - '32-32'
 | 
				
			||||||
 | 
					  - '512-64'
 | 
				
			||||||
 | 
					  # - '1024-128'
 | 
				
			||||||
 | 
					test_api:
 | 
				
			||||||
 | 
					  # - "transformer_int4"
 | 
				
			||||||
 | 
					  # - "native_int4"
 | 
				
			||||||
 | 
					  # - "optimize_model"
 | 
				
			||||||
 | 
					  # - "pytorch_autocast_bf16"
 | 
				
			||||||
 | 
					  # - "ipex_fp16_gpu" # on Intel GPU
 | 
				
			||||||
 | 
					  # - "transformer_int4_gpu"  # on Intel GPU
 | 
				
			||||||
 | 
					  # - "optimize_model_gpu"  # on Intel GPU
 | 
				
			||||||
 | 
					  # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
 | 
				
			||||||
 | 
					  - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
 | 
				
			||||||
 | 
					cpu_embedding: True # whether put embedding to CPU (only avaiable now for gpu win related test_api)
 | 
				
			||||||
							
								
								
									
										33
									
								
								python/llm/test/benchmark/igpu-perf-test.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										33
									
								
								python/llm/test/benchmark/igpu-perf-test.yaml
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,33 @@
 | 
				
			||||||
 | 
					repo_id:
 | 
				
			||||||
 | 
					  - 'THUDM/chatglm2-6b'
 | 
				
			||||||
 | 
					  - 'THUDM/chatglm3-6b'
 | 
				
			||||||
 | 
					  - 'baichuan-inc/Baichuan2-7B-Chat'
 | 
				
			||||||
 | 
					  - 'internlm/internlm-chat-7b-8k'
 | 
				
			||||||
 | 
					  - 'Qwen/Qwen-7B-Chat-10-12'
 | 
				
			||||||
 | 
					  - 'BAAI/AquilaChat2-7B'
 | 
				
			||||||
 | 
					  - '01-ai/Yi-6B'
 | 
				
			||||||
 | 
					  - 'meta-llama/Llama-2-7b-chat-hf'
 | 
				
			||||||
 | 
					  - 'WisdomShell/CodeShell-7B-Chat'
 | 
				
			||||||
 | 
					  - 'tiiuae/falcon-7b-instruct-with-patch'
 | 
				
			||||||
 | 
					  - 'mosaicml/mpt-7b-chat'
 | 
				
			||||||
 | 
					  - 'liuhaotian/llava-v1.5-7b'
 | 
				
			||||||
 | 
					local_model_hub: 'path to your local model hub'
 | 
				
			||||||
 | 
					warm_up: 3
 | 
				
			||||||
 | 
					num_trials: 5
 | 
				
			||||||
 | 
					num_beams: 1 # default to greedy search
 | 
				
			||||||
 | 
					low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
 | 
				
			||||||
 | 
					in_out_pairs:
 | 
				
			||||||
 | 
					  - '32-32'
 | 
				
			||||||
 | 
					  - '512-64'
 | 
				
			||||||
 | 
					  # - '1024-128'
 | 
				
			||||||
 | 
					test_api:
 | 
				
			||||||
 | 
					  # - "transformer_int4"
 | 
				
			||||||
 | 
					  # - "native_int4"
 | 
				
			||||||
 | 
					  # - "optimize_model"
 | 
				
			||||||
 | 
					  # - "pytorch_autocast_bf16"
 | 
				
			||||||
 | 
					  # - "ipex_fp16_gpu" # on Intel GPU
 | 
				
			||||||
 | 
					  # - "transformer_int4_gpu"  # on Intel GPU
 | 
				
			||||||
 | 
					  # - "optimize_model_gpu"  # on Intel GPU
 | 
				
			||||||
 | 
					  # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
 | 
				
			||||||
 | 
					  - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
 | 
				
			||||||
 | 
					cpu_embedding: True # whether put embedding to CPU (only avaiable now for gpu win related test_api)
 | 
				
			||||||
		Loading…
	
		Reference in a new issue