Pytorch models transformers version update (#11860)
* yi sync * delete 4.34 constraint * delete 4.34 constraint * delete 4.31 constraint * delete 4.34 constraint * delete 4.35 constraint * added <=4.33.3 constraint * added <=4.33.3 constraint * switched to chinese prompt
This commit is contained in:
parent
0d58c2fdf9
commit
3ee194d983
10 changed files with 23 additions and 30 deletions
|
|
@ -122,18 +122,18 @@ In the example, several arguments can be passed to satisfy your requirements:
|
|||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
What is AI?
|
||||
AI是什么?
|
||||
-------------------- Output --------------------
|
||||
What is AI?
|
||||
Artificial Intelligence (AI) is the simulation of human intelligence in machines. AI is the science and engineering of making intelligent machines, especially intelligent computer programs.
|
||||
AI是什么?
|
||||
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及
|
||||
```
|
||||
|
||||
#### [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
What is AI?
|
||||
AI是什么?
|
||||
-------------------- Output --------------------
|
||||
What is AI?
|
||||
Artificial Intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems. These processes include learning, reasoning, and self-
|
||||
AI是什么?
|
||||
人工智能(Artificial Intelligence, AI)是计算机科学的一个分支,它研究如何让计算机模拟人类的智能行为。人工智能可以通过模仿人类的思维过程和
|
||||
```
|
||||
|
|
@ -27,7 +27,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--repo-id-or-model-path', type=str, default="01-ai/Yi-6B-Chat",
|
||||
help='The huggingface repo id for the Yi model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||
help='Prompt to infer')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
|
|
|||
|
|
@ -16,7 +16,6 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install transformers==4.31.0
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -27,7 +26,6 @@ conda activate llm
|
|||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install transformers==4.31.0
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -14,8 +14,6 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
pip install transformers==4.34.1 # CodeLlamaTokenizer is supported in higher version of transformers
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -26,8 +24,6 @@ conda activate llm
|
|||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
pip install transformers==4.34.1 # CodeLlamaTokenizer is supported in higher version of transformers
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -14,8 +14,6 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
pip install transformers==4.35.2 # required by DeciLM-7B
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@ In this directory, you will find examples on how you could use IPEX-LLM `optimiz
|
|||
## Requirements
|
||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||
|
||||
**Important: According to [Mistral Troubleshooting](https://huggingface.co/mistralai/Mistral-7B-v0.1#troubleshooting), please make sure you have installed `transformers==4.34.0` to run the example.**
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Mistral model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
|
||||
|
|
@ -16,9 +15,6 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
# Refer to https://huggingface.co/mistralai/Mistral-7B-v0.1#troubleshooting, please make sure you are using a stable version of Transformers, 4.34.0 or newer.
|
||||
pip install transformers==4.34.0
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -29,9 +25,6 @@ conda activate llm
|
|||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
# Refer to https://huggingface.co/mistralai/Mistral-7B-v0.1#troubleshooting, please make sure you are using a stable version of Transformers, 4.34.0 or newer.
|
||||
pip install transformers==4.34.0
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ conda activate llm
|
|||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
pip install "transformers<4.35"
|
||||
pip install transformers<=4.33.3
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -26,6 +26,8 @@ conda activate llm
|
|||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
pip install transformers<=4.33.3
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -14,8 +14,6 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
pip install transformers==4.35.2 # required by SOLAR
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
|
|
@ -26,8 +24,6 @@ conda activate llm
|
|||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
pip install transformers==4.35.2 # required by SOLAR
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
# Yi
|
||||
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API on Yi models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [01-ai/Yi-6B](https://huggingface.co/01-ai/Yi-6B) as a reference Yi model.
|
||||
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API on Yi models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [01-ai/Yi-6B](https://huggingface.co/01-ai/Yi-6B) and [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-1.5-6B-Chat) as reference Yi models.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||
|
|
@ -112,7 +112,7 @@ python ./generate.py
|
|||
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Yi model (e.g. `01-ai/Yi-6B`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'01-ai/Yi-6B'`.
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Yi model (e.g. `01-ai/Yi-6B` and `01-ai/Yi-6B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'01-ai/Yi-6B-Chat'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
|
|
@ -127,3 +127,13 @@ AI是什么?
|
|||
AI是什么?
|
||||
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及
|
||||
```
|
||||
|
||||
#### [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
AI是什么?
|
||||
-------------------- Output --------------------
|
||||
AI是什么?
|
||||
人工智能(Artificial Intelligence, AI)是计算机科学的一个分支,它研究如何让计算机模拟人类的智能行为。人工智能可以通过模仿人类的思维过程和
|
||||
```
|
||||
|
|
@ -26,7 +26,7 @@ YI_PROMPT_FORMAT = "{prompt}"
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Yi model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="01-ai/Yi-6B",
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="01-ai/Yi-6B-Chat",
|
||||
help='The huggingface repo id for the Yi model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||
|
|
|
|||
Loading…
Reference in a new issue