add basic glm-edge support (#12531)
This commit is contained in:
parent
dbaf4abcb3
commit
3e0823d2ae
2 changed files with 219 additions and 1 deletions
|
|
@ -1070,6 +1070,10 @@ def _optimize_pre(model, qtype=None):
|
|||
model.apply(split_mlp)
|
||||
elif model.config.num_layers in [40, 28]:
|
||||
model.apply(split_mlp)
|
||||
elif model.config.model_type == "glm":
|
||||
from ipex_llm.transformers.models.glm import merge_qkv, split_mlp
|
||||
model.apply(merge_qkv)
|
||||
model.apply(split_mlp)
|
||||
|
||||
return model
|
||||
|
||||
|
|
@ -1487,7 +1491,19 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
# workaround glm4-9b fp16 overflow
|
||||
from ipex_llm.transformers.models.chatglm4 import chatglm4_block_forward
|
||||
convert_forward(model, module.GLMBlock, chatglm4_block_forward)
|
||||
|
||||
elif model.config.model_type == "glm":
|
||||
# glm-edge series
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from ipex_llm.transformers.models.common import rms_norm_forward
|
||||
from ipex_llm.transformers.models.common import mlp_silu_forward
|
||||
from ipex_llm.transformers.models.glm import glm_attention_forward
|
||||
from ipex_llm.transformers.models.glm import glm_model_forward_wrapper
|
||||
convert_forward(model, module.GlmRMSNorm, rms_norm_forward)
|
||||
convert_forward(model, module.GlmMLP, mlp_silu_forward)
|
||||
convert_forward(model, module.GlmAttention, glm_attention_forward)
|
||||
glm_model_forward = glm_model_forward_wrapper(module.GlmModel.forward)
|
||||
convert_forward(model, module.GlmModel, glm_model_forward)
|
||||
elif "mpt" in model.config.model_type:
|
||||
if model.config.architectures is not None:
|
||||
modeling_module_name = model.__class__.__module__
|
||||
|
|
|
|||
202
python/llm/src/ipex_llm/transformers/models/glm.py
Normal file
202
python/llm/src/ipex_llm/transformers/models/glm.py
Normal file
|
|
@ -0,0 +1,202 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# This file is adapted from
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm/modeling_glm.py
|
||||
#
|
||||
# which is licensed under Apache License 2.0:
|
||||
#
|
||||
# Copyright 2024 The GLM & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
from typing import Optional, Tuple
|
||||
from transformers.cache_utils import Cache
|
||||
from transformers.models.glm.modeling_glm import GlmAttention, GlmMLP
|
||||
from transformers.models.glm.modeling_glm import repeat_kv, apply_rotary_pos_emb
|
||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
|
||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
||||
|
||||
|
||||
def merge_qkv(module: torch.nn.Module):
|
||||
merge_qkv_base(module, GlmAttention)
|
||||
|
||||
|
||||
def split_mlp(module: torch.nn.Module):
|
||||
if isinstance(module, GlmMLP):
|
||||
gate_weight, up_weight = module.gate_up_proj.weight.data.chunk(2, dim=0)
|
||||
|
||||
gate_proj = torch.nn.Linear(0, 0, bias=False)
|
||||
gate_proj.weight = torch.nn.Parameter(gate_weight, requires_grad=False)
|
||||
gate_proj.in_features = gate_weight.size(1)
|
||||
gate_proj.out_features = gate_weight.size(0)
|
||||
|
||||
up_proj = torch.nn.Linear(0, 0, bias=False)
|
||||
up_proj.weight = torch.nn.Parameter(up_weight, requires_grad=False)
|
||||
up_proj.in_features = up_weight.size(1)
|
||||
up_proj.out_features = up_weight.size(0)
|
||||
|
||||
module.gate_proj = gate_proj
|
||||
module.up_proj = up_proj
|
||||
|
||||
del module.gate_up_proj
|
||||
|
||||
# rename activation function
|
||||
module.act_fn = module.activation_fn
|
||||
|
||||
|
||||
def glm_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
|
||||
**kwargs,
|
||||
):
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
qkv = self.qkv_proj(hidden_states)
|
||||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||
qkv = qkv.transpose(1, 2)
|
||||
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||
self.num_key_value_heads,
|
||||
self.num_key_value_heads], dim=1)
|
||||
|
||||
cos, sin = position_embeddings
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||||
|
||||
use_quantizekv = isinstance(past_key_value, DynamicFp8Cache)
|
||||
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, cache_kwargs)
|
||||
|
||||
kv_seq_len = key_states.size(-2)
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
attention_mask = attention_mask[:, :, :, : kv_seq_len]
|
||||
|
||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import xe_addons
|
||||
if use_quantizekv:
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import xe_addons
|
||||
if use_quantizekv:
|
||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
||||
value_states, attention_mask)
|
||||
else:
|
||||
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
||||
value_states, attention_mask)
|
||||
else:
|
||||
if use_quantizekv:
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
query_states.dtype)
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) * self.scaling
|
||||
|
||||
if attention_mask is not None:
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||
training=self.training)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
def glm_model_forward_wrapper(origin_forward):
|
||||
def glm_model_forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**flash_attn_kwargs,
|
||||
):
|
||||
# ipex-llm changes start
|
||||
# IPEX-LLM OPT: kv cache and quantize kv cache
|
||||
inputs = input_ids if input_ids is not None else inputs_embeds
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
use_cache = use_cache or inputs.device.type == 'xpu'
|
||||
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs,
|
||||
self.config.num_attention_heads //
|
||||
self.config.num_key_value_heads)
|
||||
|
||||
if use_cache:
|
||||
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
|
||||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
|
||||
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||
# ipex-llm changes end
|
||||
|
||||
return origin_forward(
|
||||
self=self,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
cache_position=cache_position,
|
||||
**flash_attn_kwargs,
|
||||
)
|
||||
|
||||
return glm_model_forward
|
||||
Loading…
Reference in a new issue